Publications

Filter by Keyword

Filter by Application

Filter by Product/Solution


Chromosoma, 115, 459- 467
2006

The breakage-fusion-bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma.

S. Selvarajah, M. Yoshimoto, P.C. Park, G. Maire, J. Paderova, J. Bayani, G. Lim, K. Al-Romaih, J.A. Squire, M. Zielenska

Osteosarcoma (OS) is characterized by chromosomal instability and high copy number gene amplification. The breakage–fusion–bridge (BFB) cycle is a well-established mechanism of genome instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. To determine whether the BFB cycle could be increasing the de novo rate of formation of cytogenetic aberrations in OS, the frequency of anaphase bridge configurations and dicentric chromosomes in four OS cell lines was quantified. An increased level of anaphase bridges and dicentrics was observed in all the OS cell lines. There was also a strong association between the frequencies of anaphase bridges, dicentrics, centrosomal anomalies, and multipolar mitotic figures in all the OS cell lines, indicating a possible link in the mechanisms that led to the structural and numerical instabilities observed in OS. In summary, this study has provided strong support for the role of the BFB cycle in generating the extensive structural chromosome aberrations, as well as cell-to-cell cytogenetic variation observed in OS, thus conferring the genetic diversity for OS tumor progression.

Radiat Environ Biophys, 44(3), 219–224
December, 2005

Space radiation does not induce a significant increase of intrachromosomalexchanges in astronauts' lymphocytes.

M. Horstmann, M. Durante, C. Johannes, R. Pieper, G. Obe

Chromosome aberration analysis in astronauts has been used to provide direct, biologically motivated estimates of equivalent doses and risk associated to cosmic radiation exposure during space flight. However, the past studies concentrated on measurements of dicentrics and translocations, while chromosome intrachanges (inversions) have never been measured in astronauts' samples. Recent data reported in the literature suggest that densely ionizing radiation can induce a large fraction of intrachanges, thus leading to the suspicion that interchanges grossly underestimate the cosmic radiation-induced cytogenetic damage in astronauts. We have analyzed peripheral blood lymphocytes from 11 astronauts involved in short- or long-term space flights in low-Earth orbit using high-resolution multicolor banding to assess the frequency of intrachromosomal exchanges in both pre- and post-flight samples. We did not detect any inversions in chromosome 5 from a total of 2800 cells in astronauts' blood. In addition, no complex type exchanges were found in a total of 3590 astronauts' lymphocytes analyzed by multifluor fluorescence in situ hybridisation. We conclude that, within the statistical power of this study, the analysis of interchanges for biological dosimetry in astronauts does not significantly underestimate the space radiation-induced cytogenetic damage, and complex-type exchanges or intrachanges have limited practical use for biodosimetry at very low doses.

World J Surg Oncol., 17, 35- 42
2005

Secretory carcinoma of the breast containing the ETV6-NTRK3 fusion gene in a male: case report and review of the literature

C. Arce, D. Cortes-Padilla, D.G. Huntsman, M.A. Miller, A. Duennas-Gonzalez, A. Alvarado, V. Pérez, D. Gallardo-Rincón, F. Lara-Medina

SUMMARY: BACKGROUND: Secretory carcinoma (SC) of the breast is a rare and indolent tumor. Although originally described in children, it is now known to occur in adults of both sexes. Recently, the tumor was associated with the ETV6-NTRK3 gene translocation. CASE PRESENTATION: A 52-year-old male was diagnosed with secretory breast carcinoma and underwent a modified radical mastectomy. At 18 months the tumor recurred at the chest wall and the patient developed lung metastases. He was treated concurrently with radiation and chemotherapy without response. His tumor showed the ETV6-NTRK3 translocation as demonstrated by fluorescent in situ hybridization (FISH). CONCLUSION: SC is a rare slow-growing tumor best treated surgically. There are insufficient data to support the use of adjuvant radiation or chemotherapy. Its association with the ETV6-NTRK3 fusion gene gives some clues for the better understanding of this neoplasm and eventually, the development of specific therapies.

Genes Chromosomes Cancer, 44, 1- 9
2005

Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study

M Prakash Hande, TV Azizova, LF Burak, VF Khokhryakov, CR Geard, DJ Brenner

Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago.

Advances in Space Research, 35, 276- 279
2005

Chromosomal intrachanges induced by swift iron ions

M. Horstmann, M. Durante, C. Johannes, G. Obe

<p>Genomic fingerprints of mutagenic agents would have wide applications in the field of cancer biology, epidemiology and prevention. The differential spectra of chromosomal aberrations induced by different clastogens suggest that ratios of specific aberrations can be exploited as biomarkers of carcinogen exposure. We have tested this hypothesis using the novel technique of multicolor banding in situ hybridization (mBAND) in human peripheral blood lymphocytes exposed in vitro to X rays, neutrons, heavy ions, or the restriction endonuclease AluI. In the heavy-ion-irradiated cells, we further analyzed aberrations in chromosome 5 using multicolor FISH (mFISH). Contrary to the expectations of biophysical models, our results do not support the use of the ratios of inter-/intrachromosomal exchanges or intra-/interarm intrachanges as fingerprints of exposure to densely ionizing radiation. However, our data point to measurable differences in the ratio of complex/simple interchanges after exposure to different clastogens. These data should be considered in current biophysical models of radiation action in living cells.</p>

J Appl Genet, 46, 319- 325
2005

Genotoxicity of the volatile anaesthetic desflurane in human lymphocytes in vitro, established by comet assay.

T.M. Karpinski, M. Kostrzewska-P., I. Stachecki, A. Mikstacki, K. Szyfter

The aim of the present study was to estimate the genotoxicity of desflurane, applied as a volatile anaesthetic. The potential genotoxicity was determined by the comet assay as the extent of DNA fragmentation in human peripheral blood lymphocytes in vitro. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA fragmentation due to cell death. Another anaesthetic, halothane, already proved to be a genotoxic agent, was used as a positive control. Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner under experimental conditions applied. The results of the study demonstrated that the genotoxicity of desflurane was comparable with that of halothane. However, considering the pharmacodynamics of both drugs, the genotoxic activity of desflurane may be connected with a less harmful effect on the exposed patients or medical staff.

J. Med. Assoc. Thai, 88, 1- 6
2005

Chromosome analysis of uncultured amniocytes by comparative genomic hybridization in early amniocentesis.

A. Ketupanya, N. Aranyakasemsuk, C. Tocharoentanaphol, C. Vuthiwong

OBJECTIVE: To study chromosome analysis by comparative genomic hybridization (CGH) compared with the conventional technique in early amniocentesis. MATERIAL AND METHOD: Cross-sectional descriptive study design was performed in 32 singleton pregnant women with gestational age between 12-15 weeks. Transabdominal amniocentesis was carried out under ultrasound guidance. The amniotic fluid samples were simultaneously investigated using CGH and the conventional cytogenetics study as a gold standard. RESULTS: Amniocentesis were done for advanced maternal age in all cases. The mean maternal age was 35.8 years (35-42 years). The mean gestational age was 13.7 weeks (12-15 weeks). The chromosome analysis by CGH technique of uncultured amniocyte showed 17 normal female chromosomes (53.1%) and 15 normal male chromosomes (46.9%). This finding was the same as the conventional cytogenetics method. The mean duration of the CGH method was 6 days and that of the conventional cytogenetics method was 13.7 days (10-23 days). CONCLUSION: The CGH technique is a reliable technique for a rapid prenatal diagnosis of chromosome study in early gestation.

Invest Ophthalmol Vis Sci, 46, 2253- 2257
2005

Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients.

E. Kilic, N.C. Naus, van Gils, W., C.C. Klaver, van Til, M.E., M.M. Verbiest, T. Stijnen, C.M. Mooy, D. Paridaens, H.B. Beverloo, G.P. Luyten, de Klein, A.

PURPOSE: Uveal melanoma is a highly malignant disease with a mortality rate of 50% at 10 to 15 years. Previous studies have shown that chromosomal changes are associated with decreased survival of the patient. However, in these studies the small number of tumors analyzed did not allow robust statistical analysis. In the present study, the independent numerical changes in chromosomes 1, 3, 6, and 8 on disease-free survival (DFS) was assessed in a large series of patients with uveal melanoma. METHODS: One hundred twenty tumors from patients with uveal melanoma were analyzed for numerical changes in chromosomes 1, 3, 6, and 8, with cytogenetic analysis, fluorescent in situ hybridization, and/or comparative genomic hybridization. Data were correlated with disease outcome in univariate and multivariate analyses, by Kaplan-Meier and Cox regression analyses. RESULTS: At a mean follow-up time of 45 months, 42 patients had died or had metastatic disease. In the univariate analysis, loss of chromosome 3, gain of 8q, largest tumor diameter, or the presence of epithelioid cells was associated with a decreased DFS. In the multivariate analysis, the effect of monosomy 3 on survival was largely modified by changes in 1p36. Regarding all chromosomal changes, only the concurrent loss of the short arm of chromosome 1 and all of chromosome 3 was an independent prognostic parameter for disease-free survival (P < 0.001). CONCLUSIONS: In uveal melanoma, concurrent loss of the short arm of chromosome 1 and all of chromosome 3 is an independent predictor of decreased DFS.

British Journal of Cancer, 92, 382- 388
2005

Multicolour-banding fluorescence in situ hybridization (mbanding-FISH) to identify recurrent chromosomal alterations in breast tumour cell lines.

A. Letessier, M.-J. Mozziconacci, A. Murati, J. Juriens, J. Adelaide, D. Birnbaum, M. Chaffanet

<p>Recurrent chromosome breakpoints in tumour cells may point to cancer genes, but not many have been molecularly characterised. We have used multicolour-banding fluorescence in situ hybridisation (mbanding-FISH) on breast tumour cell lines to identify regions of chromosome break created by inversions, duplications, insertions and translocations on chromosomes 1, 5, 8, 12 and 17. We delineate a total of 136 regions of break, some of them occurring with high frequency. We further describe two examples of dual-colour FISH characterisation of breakpoints, which target the 1p36 and 5p11-12 regions. Both breaks involve genes whose function is unknown to date. The mbanding-FISH strategy constitutes an efficient first step in the search for potential cancer genes.</p>

Cancer Genet Cytogenet, 163, 44- 56
2005

Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells.

R. Li, R. Hehlman, R. Sachs, P. Duesberg

Conventional mutation-selection theories have failed to explain (i) how cancer cells become spontaneously resistant against cytotoxic drugs at rates of up to 10(-3) per cell generation, orders higher than gene mutation, even in cancer cells; (ii) why resistance far exceeds a challenging drug-a state termed multidrug resistance; (iii) why resistance is associated with chromosomal alterations and proportional to their numbers; and (iv) why resistance is totally dependent on aneuploidy. We propose here that cancer-specific aneuploidy generates drug resistance via chromosomal alterations. According to this mechanism, aneuploidy varies the numbers and structures of chromosomes automatically, because it corrupts the many teams of proteins that segregate, synthesize, and repair chromosomes. Aneuploidy is thus a steady source of chromosomal variation from which, in classical Darwinian terms, resistance-specific aneusomies are selected in the presence of chemotherapeutic drugs. Some of the thousands of unselected genes that hitchhike with resistance-specific aneusomies can thus generate multidrug resistance. To test this hypothesis, we determined the rates of chromosomal alterations in clonal cultures of human breast and colon cancer lines by dividing the fraction of nonclonal karyotypes by the number of generations of the clone. These rates were about 10(-2) per cell generation, orders higher than mutation. Chromosome numbers and structures were determined in metaphases hybridized with color-coded chromosome-specific DNA probes. Further, we tested puromycin-resistant subclones of these lines for resistance-specific aneusomies. Resistant subclones differed from parental lines in four to seven specific aneusomies, of which different subclones shared some. The degree of resistance was roughly proportional to the number of these aneusomies. Thus, aneuploidy is the primary cause of the high rates and wide ranges of drug resistance in cancer cells.

Int. J. Radiat. Biol., 81, 741- 749
2005

The radiation sensitivity of human chromosomes 2, 8, and 14 in peripheral blood lymphocytes of seven donors.

S. Sommer, I. Buraczewska, M. Wojewodzka, E. Bouzyk, I. Szumiel, A. Wojcik

PURPOSE: To investigate if deviations from DNA-proportional distribution of radiation-induced chromosomal aberrations are individually variable. MATERIALS AND METHODS: Peripheral blood lymphocytes were collected from seven healthy donors and exposed to different doses of gamma rays. Chromosomes 2, 8 and 14 were painted in different colors and aberrations scored with the help of an image-analysis system. RESULTS: Chromosome 2 was generally less sensitive than expected on the basis of DNA-proportional distribution and the extent of inter-donor variability was minimal. A higher than expected frequency of aberrations was found in chromosome 14 of five donors, while a higher than expected frequency of aberrations was found in chromosome 8 of two donors. CONCLUSIONS: Inter-donor variability may explain some of the controversies regarding the inter-chromosomal distribution of radiation-induced aberrations.

Plant J, 43, 662- 674
2005

Telomerase-independent cell survival in Arabidopsis thaliana.

J.M. Watson, P. Bulankova, K. Riha, D.E. Shippen, B. Vyskot

Telomerase is the reverse transcriptase responsible for the maintenance of telomeric repeat sequences in most species that have been studied. Inactivation of telomerase causes telomere shortening and results in the loss of the telomere's protective function, which in mammals leads to cell-cycle arrest and apoptosis. Experiments performed on Arabidopsis thaliana mutants lacking telomerase activity revealed their unusually high tolerance for genome instability. Here we present molecular and cytogenetic analysis of two cell lines (A and B) derived from seeds of late-generation telomerase-deficient A. thaliana. These cultures have survived for about 3 years and are still viable. However, neither culture has adapted mechanisms to maintain terminal telomeric repeats. One culture (B) suffers from severe growth irregularities and a high degree of mortality. Karyological analysis revealed dramatic genomic rearrangements, a large variation in ploidy, and an extremely high percentage of anaphase bridges. The second cell line (A) survived an apparent crisis and phenotypically appears wild-type with respect to growth and morphology. Despite these indications of genome stabilization, a high percentage of anaphase bridges was observed in the A line. We conclude that the restructured chromosome termini provide the A line with partial protection from end-joining repair activities, thus allowing normal growth.

Int J Mol Med, 16, 463- 469
2005

Studies on the action of mitomycin C and bleomycin on telomere lengths of human lymphocyte chromosomes.

U. Wick, E. Gebhart

In order to address the problem of the action of cytostatics on chromosome ends, telomere length was measured in human lymphocyte cultures exposed to mitomycin C (MMC) and bleomycin (BLM). Telomere-specific PNA probes were used for the quantitative estimation of the relative telomere length of each individual chromosome by fluorescence in situ hybridization. A high inter-cellular and inter-individual variability of relative telomere lengths was found throughout all experiments. Different responses could be observed with respect to the action of the examined mutagens: The total average fluorescence intensity of labeled telomere repeats was decreased under the action of MMC in two of the experiments, while two revealed no significant alteration. BLM caused no significant change of total average telomeric signal intensity in four, a clear decrease in one of the six experiments, and an increase in another. Although all chromosome ends contributed to the observed trends, single telomeres were affected in a very distinct way. The highest concentration of MMC (1 microg/ml) induced significant shortening of telomeres of the chromosome arms; 2q, 3p, 5q, 7p, 10q, 11p, 13q, 17p, 18p&q, and 21q in two independent experiments. In one BLM experiment with 8 microg/ml, the most distinct decrease (p< or =0.005) of telomeric fluorescence was found at the ends of chromosome arms; 1q, 6p, 17p, 20p&q, and 22q. The increase of telomeric signal intensity affected the telomeres of some individual chromosome arms more than others, e.g. 4q, 6p, 7p, 8p, 13p, and 18q. Although the telomere length of the individual chromosome arms varied widely, clear trends could be observed with respect to the rank which was occupied by telomeric length of the various chromosome arms. The telomeres of the 1p, 3p, 4q, 5p, 12q, and 13q chromosome arms throughout all experiments were among the longest; and those of 13p, 15p, 21p, and 22p were among the shortest telomeres of the karyotype. From these data, it can be concluded that MMC affects the telomeric repeat area of chromosomes more than BLM, which mostly had no significant effect on telomere length in the performed experiments.

Int J Radiat Biol, 26, 1707- 1713
2005

Are telomeres a specific target for mutagenic attack by cytostatics in neoplastic cells?

U. Wick, E. Gebhart

Damage to telomeres induced by cytostatic therapy theoretically could generate telomere shortening and, subsequently, induce an additional genomic instability in neoplastic cells. Model experiments were carried out to examine this hypothesis. Cells of the T-ALL derived cell line CCRF-CEM were exposed to various different concentrations of Bleomycin (BLM) or Mitomycin C (MMC) for various times. Telomere lengths of metaphase chromosomes of the exposed cells were compared with those without this exposure (controls). In addition, telomerase activity was determined with a TRAP assay under the given conditions using the BLM experiments as a model. Although slight changes of total telomere length could be found in single experiments, the differences between exposed and non-exposed cells were not significant. Also, a considerable telomerase activity was shown which, however, did not substantially differ between exposed and non-exposed cells. From these data it may be concluded that, at least in the examined cell line, telomeres are not a preferential target for this kind of mutagenic attack.

Leukemia Research, 29, 273- 281
2005

Prognostic value of structural chromosomal rearrangements and small cell clones with high hyperdiploidy in children with acute lymphoblastic leukemia.

Z. Zemanova, K. Michalova, L. Sindelarova, P. Smisek, J. Brezinova, S. Ransdorfova, V. Vavra, A. Dohnalova, J. Stary

In this study, 107 children with acute lymphoblastic leukemia (ALL) were analysed for the presence of hyperdiploidy by cytogenetics and interphase fluorescence in situ hybridisation (I-FISH). Structural aberrations in hyperdiploid cells were investigated by multiple colour FISH (mFISH). Clones with high hyperdiploidy (>50 chromosomes) (HeH) were found in 46 patients (43%). In nine of these (20%), the abnormal clone was present in <20% of the total cell population. There was no significant difference in EFS between those patients with HeH in 2.5-20% or >20% of cells. Structural rearrangements in the HeH clone were found in 10 patients (22%). In this study, HeH karyotypes containing structural aberrations were an indication of a poor prognosis in childhood ALL.

Oncogene, 23(45), 7507–7516
September, 2004

Tumor necrosis factor alpha induces senescence and chromosomal instabilityin human leukemic cells.

Odile Beyne-Rauzy, Christian Recher, Nicole Dastugue, Cécile Demur, Géraldine Pottier, Guy Laurent, Laure Sabatier, Véronique Mansat-De Mas

Previous studies have documented that Tumor necrosis factor alpha (TNFalpha) is a potent negative regulator of normal hematopoiesis. However, the mechanism by which TNFalpha acts at the cellular level is not totally understood. Although apoptotic cell killing appears to be the most common cellular effect of TNFalpha, other studies suggest that this cytokine may elicit other cellular responses such as prolonged growth inhibition. In this context, we have investigated whether TNFalpha may induce senescence in hematopoietic cells, which display intrinsic defect in the apoptotic machinery. The present study described that, in the leukemic KG1 cells, TNFalpha induced no apoptosis but a senescence state characterized by prolonged growth arrest, increased beta-galactosidase activity, p21WAF-1 induction, decreased telomerase activity, telomeric disturbances (shortening, losses, fusions), and additional chromosomal aberrations. Telomerase inhibition correlated with reduced levels of hTERT transcripts. GM-CSF prevented TNFalpha effects and allowed leukemic cells to recover growth capacity. Finally, our study shows for the first time that, at least in some hematopoietic cells, TNFalpha may induce senescence with important functional consequences, including sustained growth inhibition and genetic instability, and that this cellular response is efficiently regulated by hematopoietic growth factors.

Int J Oncol, 24, 1279- 1288
2004

Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil.

P.M. De Angelis, B. Fjell, K.L. Kravik, T. Haug, S.H. Tunheim, W. Reichelt, M. Beigi, O.P. Clausen, E. Galteland, T. Stokke

5-Fluorouracil (5-FU) is the chemotherapeutic drug of choice for the treatment of metastatic colorectal cancer, but resistance to 5-FU remains a major obstacle to successful therapy. We generated 5-FU-resistant derivatives of the HCT116 human colon cancer cell line by serial passage of these cells in the presence of increasing 5-FU concentrations in an attempt to elucidate the biological mechanisms involved in resistance to 5-FU. Two resultant resistant derivatives, HCT116 ResB and ResD, were characterized for resistance phenotypes, genotypes, and gene expression using cells maintained long-term in 5-FU-free media. Compared to parental HCT116 cells that respond to 5-FU challenge by inducing high levels of apoptosis, ResB and ResD derivatives had significantly reduced apoptotic fractions when transiently challenged with 5-FU. ResB and ResD cells were respectively 27- and 121-fold more resistant to 5-FU, had increased doubling times, and significantly increased plating efficiencies compared to the parental cells. Both resistant derivatives retained the wild-type TP53 genotype, TP53 copy number and CGH profile characteristic of the parental line. Alterations in gene expression in the resistant derivatives compared to the parental line were assessed using oligonucleotide microarrays. Overall, the 5-FU-resistant derivatives were characterized by reduced apoptosis and a more aggressive growth phenotype, consistent with the observed up-regulation of apoptosis-inhibitory genes (e.g., IRAK1, MALT1, BIRC5), positive growth-regulatory genes (e.g., CCND3, CCNE2, CCNF, CYR61), and metastasis genes (e.g., LMNB1, F3, TMSNB), and down-regulation of apoptosis-promoting genes (e.g., BNIP3, BNIP3L, FOXO3A) and negative growth-regulatory genes (e.g., AREG, CCNG2, CDKN1A, CDKN1C, GADD45A). 5-FU metabolism-associated genes (e.g., TYMS, DTYMK, UP) and DNA repair genes (e.g., FEN1, FANCG, RAD23B) were also up-regulated in one or both resistant derivatives, suggesting that the resistant derivatives might be able to overcome both 5-FU inhibition of thymidylate synthase and the DNA damage caused by 5-FU, respectively. Development of 5-FU resistance thus appears to encompass deregulation of apoptosis-, proliferation-, DNA repair-, and metastasis-associated regulatory pathways.

Hum Reprod, 19, 685- 693
2004

Fluorescence in situ hybridization analysis of two blastomeres from day 3 frozen-thawed embryos followed by analysis of the remaining embryo on day 5.

E.B. Baart, D. Van Opstal, F.J. Los, B.C.J.M. Fauser, E.Martini

BACKGROUND: Chromosomal mosaicism in human embryos may give rise to false positive or false negative results in preimplantation genetic diagnosis for aneuploidy screening (PGD-AS). Therefore, we have investigated whether the results obtained from a 2-cell biopsy of frozen-thawed embryos and fluorescence in situ hybridization (FISH) analysis are representative for the chromosome constitution of the remaining embryo on day 5. METHODS: Cryopreserved day 3 embryos were thawed and from surviving embryos two blastomeres were biopsied. FISH analysis was performed for chromosomes 1, 7, 13, 15, 16, 18, 21, 22, X and Y. After biopsy, the embryos were cultured until day 5 and further analysed using the same probe panels. RESULTS: In all, 17 embryos were available with a diagnosis based on two blastomeres on day 3 and confirmatory studies on day 5. In 10 of these 17 cases the initial diagnosis could be confirmed. However, in only six cases cytogenetic results were concordant. Besides the 10 cases with a 'correct' diagnosis, there were six false positive results and one false negative, all involving mosaicism. CONCLUSIONS: Investigating the chromosomal constitution of two blastomere nuclei offers a good opportunity to study the incidence of chromosomal mosaicism in early embryo development. The confirmation rate of the results obtained on day 3 depends on the interpretation and is higher when considered from a clinical than from a cytogenetic point of view.

Cytogenet Genome Res, 104, 390- 393
2004

mBAND: a high resolution multicolor banding technique for the detection of complex intrachromosomal aberrations

I. Chudoba, G. Hickmann, T. Friedrich, A. Jauch, P. Kozlowski, G. Senger

Precise breakpoint definition of chromosomal rearrangements using conventional banding techniques often fails, especially when more than two breakpoints are involved. The classic banding procedure results in a pattern of alternating light and dark bands. Hence, in banded chromosomes a specific chromosomal band is rather identified by the surrounding banding pattern than by its own specific morphology. In chromosomal rearrangements the original pattern is altered and therefore the unequivocal determination of breakpoints is not obvious. The multicolor banding technique (mBAND, see Chudoba et al., 1999) is able to identify breakpoints unambiguously, even in highly complex chromosomal aberrations. The mBAND technique is presented and illustrated in a case of intrachromosomal rearrangement with seven breakpoints all having occurred on one chromosome 16, emphasizing the unique analyzing power of mBAND as compared to conventional banding techniques.

International Journal of Oncology, 24, 127- 136
2004

Breakpoint differentiation in chromosomal aberrations of hematological malignancies: identification of 33 previously unrecorded breakpoints

A. Heller, I.F. Loncarevic, M. Glaser, E. Gebhart, U. Trautmann, U. Claussen, T. Liehr

Routine cytogenetic analysis provides important information of diagnostic and prognostic relevance for hematological malignancies. In spite of this, poorly spread metaphase chromosomes and highly rearranged karyotypes with numerous marker chromosomes, are often difficult to interpret. In order to improve the definition of chromosomal breakpoints multicolor banding (MCB) was applied on 45 bone marrow samples from patients suffering from hematological malignancies like myelodysplastic syndrome (MDS), acute myelocytic leukemia (AML), chronic myelocytic leukemia (CML) or acute lymphoblastic leukemia (ALL). The breakpoints defined by GTG banding were confirmed by MCB in 8 cases, while in the remaining 37 cases the breakpoints had to be redefined. In 20/45 cases the breakpoints could only be characterized after application of MCB. In summary, 73 different breakpoints were characterized, thereof 33 were previously undescribed. Eleven cases showed known acquired aberrations and 21 cases had previously described aberration types such as del(5q-), del(7q-), del(13q-) or t(1;5) as sole rearrangement or in connection with other complex ones. In a total of 11 cases 19 breakpoints as described before were involved in hematological malignancies, while in 14 cases 33 breakpoints were identified which have not been described previously. Thus, MCB has proven to be a powerful and reliable method for screening of chromosomal aberrations, which considerably increased the accuracy of cytogenetic diagnosis.