Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution


Science advances, 9, eadh2501
August, 2023

An engineered Sox17 induces somatic to neural stem cell fate transitions independently from pluripotency reprogramming.

Weng, Mingxi, Hu, Haoqing, Graus, Matthew S., Tan, Daisylyn Senna, Gao, Ya, Ren, Shimiao, Ho, Derek Hoi Hang, Langer, Jakob, Holzner, Markus, Huang, Yuhua, Ling, Guang Sheng, Lai, Cora Sau Wan, Francois, Mathias, Jauch, Ralf

<p>Advanced strategies to interconvert cell types provide promising avenues to model cellular pathologies and to develop therapies for neurological disorders. Yet, methods to directly transdifferentiate somatic cells into multipotent induced neural stem cells (iNSCs) are slow and inefficient, and it is unclear whether cells pass through a pluripotent state with full epigenetic reset. We report iNSC reprogramming from embryonic and aged mouse fibroblasts as well as from human blood using an engineered Sox17 (eSox17 ). eSox17 efficiently drives iNSC reprogramming while Sox2 or Sox17 fail. eSox17 acquires the capacity to bind different protein partners on regulatory DNA to scan the genome more efficiently and has a more potent transactivation domain than Sox2. Lineage tracing and time-resolved transcriptomics show that emerging iNSCs do not transit through a pluripotent state. Our work distinguishes lineage from pluripotency reprogramming with the potential to generate more authentic cell models for aging-associated neurodegenerative diseases.</p>

Digital object identifier (DOI): 10.1126/sciadv.adh2501

Environmental science and pollution research international, 30, 35258--35268
March, 2023

Exudation of microplastics from commonly used face masks in COVID-19 pandemic.

Bhangare, Rahul C., Tiwari, Mahesh, Ajmal, Puthiyaveettilparambu Yousuf, Rathod, Tejas D., Sahu, Sanjay K.

<p>The COVID-19 pandemic forced use of face masks up to billions of masks per day globally. Though an important and necessary measure for control of the pandemic, use of masks also poses some inherent risks. One of those risks is inhalation of microplastics released from the mask materials. Since most of the mask materials are made from plastic/polymers, they always have the potential to expose the user to fragmented microplastics. To estimate the amount of inhalable microplastic exuded from masks, an experiment simulating real-life scenario of mask usage was performed. The study included collection of microplastics oozed out from the masks on to a filter paper followed by staining and fluorescence detection of the total number of microplastics using a microscope. Both used and new masks were studied. Based on the emission wavelength, the microplastics were found to be belonging to three different categories, namely blue, green and red emitting microplastics respectively. The number of microplastic particles emitted per mask over a period of usage of 8 h was about 5000 to 9000 for new masks and about 6500 to 15,000 for used masks respectively. The estimation of polymer type of plastic in the mask fabrics was also carried out using Raman and FTIR spectroscopy.</p>

Digital object identifier (DOI): 10.1007/s11356-022-24702-1

Biomedicines, 10
December, 2022

The Precise Breakpoint Mapping in Paracentric Inversion 10q22.2q23.3 by Comprehensive Cytogenomic Analysis, Multicolor Banding, and Single-Copy Chromosome Sequencing.

Karamysheva, Tatyana V., Gayner, Tatyana A., Elisaphenko, Eugeny A., Trifonov, Vladimir A., Zakirova, Elvira G., Orishchenko, Konstantin E., Prokhorovich, Mariya A., Lopatkina, Maria E., Skryabin, Nikolay A., Lebedev, Igor N., Rubtsov, Nikolay B.

<p>Detection and precise genomic mapping of balanced chromosomal abnormalities in patients with impaired fertility or a clinical phenotype represent a challenge for current cytogenomics owing to difficulties with precise breakpoint localization in the regions enriched for DNA repeats and high genomic variation in such regions. Here, we present a comprehensive cytogenomic approach to breakpoint mapping in a rare paracentric inversion on 10q (in a patient with oligoasthenoteratozoospermia and necrozoospermia) that does not affect other phenotype traits. Multicolor banding, chromosomal microarray analysis, chromosome microdissection with reverse painting, and single-copy sequencing of the rearranged chromosome were performed to determine the length and position of the inverted region as well as to rule out a genetic imbalance at the breakpoints. As a result, a paracentric 19.251 Mbp inversion at 10q22.2q23.3 was described. The most probable location of the breakpoints was predicted using the hg38 assembly. The problems of genetic counseling associated with enrichment for repeats and high DNA variability of usual breakpoint regions were discussed. Possible approaches for cytogenomic assessment of couples with balanced chromosome rearrangements and problems like reproductive failures were considered and suggested as useful part of effective genetic counseling.</p>

Digital object identifier (DOI): 10.3390/biomedicines10123255

Cancer Genetics, 260, 23-29
January, 2022

Classification of fluorescent R-Band metaphase chromosomes using a convolutional neural network is precise and fast in generating karyograms of hematologic neoplastic cells

Beate Vajen, Siegfried Hänselmann, Friederike Lutterloh, Simon Käfer, Jennifer Espenkötter, Anna Beening, Jochen Bogin, Brigitte Schlegelberger, Gudrun Göhring

<p>Karyotype analysis has a great impact on the diagnosis, treatment and prognosis in hematologic neo-plasms. The identification and characterization of chromosomes is a challenging process and needs experienced personal. Artificial intelligence provides novel support tools. However, their safe and reliable application in diagnostics needs to be evaluated. Here, we present a novel laboratory approach to identify chromosomes in cancer cells using a convolutional neural network (CNN). The CNN identified the correct chromosome class for 98.8% of chromosomes, which led to a time saving of 42% for the karyotyping workflow. These results demonstrate that the CNN has potential application value in chromosome classification of hematologic neoplasms. This study contributes to the development of an automatic karyotyping platform.</p>

Digital object identifier (DOI): https://doi.org/10.1016/j.cancergen.2021.11.005

Frontiers in oncology, 11, 682647
2021

The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives.

Bláha, Pavel, Feoli, Chiara, Agosteo, Stefano, Calvaruso, Marco, Cammarata, Francesco Paolo, Catalano, Roberto, Ciocca, Mario, Cirrone, Giuseppe Antonio Pablo, Conte, Valeria, Cuttone, Giacomo, Facoetti, Angelica, Forte, Giusi Irma, Giuffrida, Lorenzo, Magro, Giuseppe, Margarone, Daniele, Minafra, Luigi, Petringa, Giada, Pucci, Gaia, Ricciardi, Valerio, Rosa, Enrico, Russo, Giorgio, Manti, Lorenzo

<p>Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and B atoms, i.e. p+ B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.</p>

Digital object identifier (DOI): 10.3389/fonc.2021.682647

Genes, 11
June, 2020

Interstitial Telomeric Repeats Are Rare in Turtles.

Clemente, Lorenzo, Mazzoleni, Sofia, Pensabene Bellavia, Eleonora, Augstenová, Barbora, Auer, Markus, Praschag, Peter, Protiva, Tomáš, Velenský, Petr, Wagner, Philipp, Fritz, Uwe, Kratochvíl, Lukáš, Rovatsos, Michail

<p>Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG) repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.</p>

Digital object identifier (DOI): 10.3390/genes11060657

Stem cell research, 42, 101679
January, 2020

Induced pluripotent stem cell line (PEIi003-A) derived from an apparently healthy male individual.

Fuchs, Nina V., Schieck, Maximilian, Neuenkirch, Michaela, Tondera, Christiane, Schmitz, Heike, Steinemann, Doris, Göhring, Gudrun, König, Renate

Induced pluripotent stem cells (iPSCs) are a useful tool to investigate pathomechanistic and cellular processes due to their differentiation potential into different somatic cell types in vitro. Here, we have generated iPSCs from an apparently healthy male individual using an integration-free reprogramming method. The resulting iPSCs are pluripotent and display a normal karyotype. Furthermore, we demonstrate that this iPSC line can be differentiated into all three germ layers.

Digital object identifier (DOI): 10.1016/j.scr.2019.101679

The journal of obstetrics and gynaecology research
January, 2019

Utility and performance of bacterial artificial chromosomes-on-beads assays in chromosome analysis of clinical prenatal samples, products of conception and blood samples.

Rose, Rajiv, Venkatesh, Aishwarya, Pietilä, Sanna, Jabeen, Gazala, Jagadeesh, Sujatha M, Seshadri, Suresh

Chromosome analysis of prenatal samples and products of conception (POC) has conventionally been done by karyotyping (KT). Shortcomings of KT like high turnaround time and culture failure led to technology innovations, such as the bacterial artificial chromosomes (BAC)s-on-Beads (BoBs)-based tests, Prenatal BoBs (prenatal samples) and KaryoLite BoBs (POC samples). In the present study, we validated and evaluated the utility of each test on prenatal, POC and blood samples. Study A (n = 305; 259 prenatal + 46 blood/POC) and Study B (n = 176; 146 POC/chorionic vill + 30 blood/amniotic fluid) samples were analyzed using Prenatal and KaryoLite BoBs kits, respectively. KT, array-based Comparative Genomic Hybridization (arrayCGH) and fluorescence in situ hybridization (FISH) were used for comparison of results. Ability of KaryoLite BoBs to identify ring chromosomes was tested. Prenatal BoBs had zero test failure rate and results of all samples were concordant with KT results. Totally four microdeletions were identified by Prenatal BoBs but not by KT. In Study B, all but two POC samples (one triploid and one tetraploid) were concordant with KT and arrayCGH. Partial chromosomal imbalance detection rate was ~64% and KaryoLite BoBs indicated the presence of a ring chromosome in all four cases. The failure rate of KaryoLite BoBs was 3%. We conclude that Prenatal BoBs (common aneuploidies and nine microdeletions) together with KT constitutes more comprehensive prenatal testing compared to FISH and KT. KaryoLite BoBs for aneuploidies of all chromosomes is highly successful in POC analysis and the ability to indicate presence of ring chromosomes improves its clinical sensitivity. Both tests are robust and could also be used for different specimens.

Digital object identifier (DOI): 10.1111/jog.13920

Cancer genomics & proteomics, 15, 91–114
March, 2018

Characterization of Camptothecin-induced Genomic Changes in the Camptothecin-resistant T-ALL-derived Cell Line CPT-K5.

Kjeldsen, Eigil, Nielsen, Christine J F, Roy, Amit, Tesauro, Cinzia, Jakobsen, Ann-Katrine, Stougaard, Magnus, Knudsen, Birgitta R

Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations and a reduced modal chromosomal number compared to RPMI-8402. soaCGH analysis identified vast copy number alterations and >200 unbalanced DNA breakpoints distributed unevenly across the chromosomal complement in CPT-K5. In addition, the short tandem repeat alleles were found to be highly different between CPT-K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.

Digital object identifier (DOI): 10.21873/cgp.20068

Evolution; international journal of organic evolution
2018

ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated.

Augstenová, Barbora, Johnson Pokorná, Martina, Altmanová, Marie, Frynta, Daniel, Rovatsos, Michail, Kratochvíl, Lukáš

Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in "basal" snakes such as pythons and boas, while heteromorphic and well differentiated in "advanced" (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non-caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.

Digital object identifier (DOI): 10.1111/evo.13543

Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation
2018

Triploid Colubrid Snake Provides Insight into the Mechanism of Sex Determination in Advanced Snakes.

Rovatsos, Michail, Augstenová, Barbora, Altmanová, Marie, Sloboda, Michal, Kodym, Petr, Kratochvíl, Lukáš

The advanced snakes (Caenophidia), the important amniote lineage encompassing more than 3,000 living species, possess highly conserved female heterogamety across all families. However, we still lack any knowledge on the gene(s) and the molecular mechanism controlling sex determination. Triploid individuals spontaneously appear in populations of diploid species and can provide an important insight into the evolution of sex determination. Here, we report a case of spontaneous triploidy in a male of the twin-spotted ratsnake (Elaphe bimaculata) with ZZW sex chromosomes. We speculate that as both ZZ and ZZW individuals develop male gonads, the ratio between the number of Z chromosomes and autosomes, and not the presence of the W chromosome in the genome, drives sex determination in the advanced snakes.

Digital object identifier (DOI): 10.1159/000490124

eLife, 6
February, 2017

Epigenetic regulation of lateralized fetal spinal gene expression underlies hemispheric asymmetries.

Ocklenburg, Sebastian, Schmitz, Judith, Moinfar, Zahra, Moser, Dirk, Klose, Rena, Lor, Stephanie, Kunz, Georg, Tegenthoff, Martin, Faustmann, Pedro, Francks, Clyde, Epplen, Jörg T, Kumsta, Robert, Güntürkün, Onur

Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest that molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

Digital object identifier (DOI): 10.7554/eLife.22784

International journal of radiation biology, 93, 48–57
January, 2017

Dose assessment intercomparisons within the RENEB network using G0-lymphocyte prematurely condensed chromosomes (PCC assay).

Terzoudi, Georgia I, Pantelias, Gabriel, Darroudi, Firouz, Barszczewska, Katarzyna, Buraczewska, Iwona, Depuydt, Julie, Georgieva, Dimka, Hadjidekova, Valeria, Hatzi, Vasiliki I, Karachristou, Ioanna, Karakosta, Maria, Meschini, Roberta, M'Kacher, Radhia, Montoro, Alegria, Palitti, Fabrizio, Pantelias, Antonio, Pepe, Gaetano, Ricoul, Michelle, Sabatier, Laure, Sebastià , Natividad, Sommer, Sylwester, Vral, Anne, Zafiropoulos, Demetre, Wojcik, Andrzej

Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.

Digital object identifier (DOI): 10.1080/09553002.2016.1234725

Nucleic Acids Res
June, 2016

Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment.

Schipler, Agnes, Mladenova, Veronika, Soni, Aashish, Nikolov, Vladimir, Saha, Janapriya, Mladenov, Emil, Iliakis, George

Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect.

Digital object identifier (DOI): 10.1093/nar/gkw487

Indian J Hematol Blood Transfus, 32(2), 154–161
June, 2016

Evaluation of ETV6/RUNX1 Fusion and Additional Abnormalities Involving ETV6 and/or RUNX1 Genes Using FISH Technique in Patients with Childhood Acute Lymphoblastic Leukemia.

Aydin, Cigdem, Cetin, Zafer, Manguoglu, Ayse Esra, Tayfun, Funda, Clark, Ozden Altiok, Kupesiz, Alphan, Akkaya, Bahar, Karauzum, Sibel Berker

<p>Childhood acute lymphoblastic leukemia (ALL) is the most common type of childhood leukemia. Specifically, ALL is a malignant disorder of the lymphoid progenitor cells, with a peak incidence among children aged 2-5 years. The t(12;21)(p13;q22) translocation occurs in 25 \% of childhood B cell precursor ALL. In this study, bone marrow samples were obtained from 165 patients with childhood ALL. We analyzed the t(12;21) translocation and other related abnormalities using the fluorescent in situ hybridization (FISH) technique with the ETV6(TEL)/RUNX1(AML1) ES dual color translocation probe. Conventional cytogenetic analyses were also performed. ETV6 and RUNX1 related chromosomal abnormalities were found in 42 (25.5 %) of the 165 patients with childhood ALL. Among these 42 patients, structural changes were detected in 33 (78.6 %) and numerical abnormalities in 9 (21.4 %). The frequency of FISH abnormalities in pediatric ALL cases were as follows: 8.5 % for t(12;21)(p13;q22) ETV6/RUNX1 fusion, 6.0 % for RUNX1 amplification, 3.0 % for tetrasomy/trisomy 21, 1.8 % for ETV6 deletion, 1.21 % for ETV6 deletion with RUNX1 amplification, 1.21 % for ETV6 amplification with RUNX1 amplification, 0.6 % for polyploidy, 0.6 % for RUNX1 deletion, and 0.6 % for diminished ETV6 signal. The most common structural abnormality was the t(12;21) translocation, followed by RUNX1 amplification and ETV6 deletion, while the most commonly observed numerical abnormality was trisomy 21.</p>

Digital object identifier (DOI): 10.1007/s12288-015-0557-7

Chromosome Res
May, 2016

Karyotype diversity suggests that Laonastes aenigmamus (Laotian rock rat) (Rodentia, Diatomyidae) is a multi-specific genus.

Richard, Florence, Gerbault-Seureau, Michèle, Douangboupha, Bounneuang, Keovichit, Kham, Hugot, Jean-Pierre, Dutrillaux, Bernard

Laonastes aenigmamus (Khanyou) is a recently described rodent species living in geographically separated limestone formations of the Khammuan Province in Lao PDR. Chromosomes of 21 specimens of L. aenigmamus were studied using chromosome banding as well as fluorescent in situ hybridization (FISH) techniques using human painting, telomere repeats, and 28S rDNA probes. Four different karyotypes were established. Study with human chromosome paints and FISH revealed that four large chromosomes were formed by multiple common tandem fusions, with persistence of some interstitial telomeres. The rearrangements separating the different karyotypes (I to IV) were also reconstructed. Various combinations of Robertsonian translocations or tandem fusions involving the same chromosomes differentiate these karyotypes. These rearrangements create a strong gametic barrier, which isolates specimens with karyotype II from the others. C-banding and FISH with telomere repeats also exhibit large and systematized differences between karyotype II and others. These data indicate an ancient reproductive separation and suggest that Laonastes is not a mono-specific genus.

Digital object identifier (DOI): 10.1007/s10577-016-9527-7

Reprod Domest Anim, 51(1), 171–174
February, 2016

A Non-Reciprocal Autosomal Translocation 64,XX, t(4;10)(q21;p15) in an Arabian Mare with Repeated Early Embryonic Loss.

Ghosh, S., Das, P. J., Avila, F., Thwaits, B. K., Chowdhary, B. P., Raudsepp, T.

Balanced autosomal translocations are a known cause for repeated early embryonic loss (REEL) in horses. In most cases, carriers of such translocations are phenotypically normal, but the chromosomal aberration negatively affects gametogenesis giving rise to both genetically balanced and unbalanced gametes. The latter, if involved in fertilization, result in REEL, whereas gametes with the balanced form of translocation will pass the defect into next generation. Therefore, in order to reduce the incidence of REEL, identification of translocation carriers is critical. Here, we report about a phenotypically normal 3-year-old Arabian mare that had repeated resorption of conceptuses prior to day 45 of gestation and was diagnosed with REEL. Conventional and molecular cytogenetic analyses revealed that the mare had normal chromosome number 64,XX but carried a non-mosaic and non-reciprocal autosomal translocation t(4;10)(q21;p15). This is a novel translocation described in horses with REEL and the first such report in Arabians. Previous cases of REEL due to autosomal translocations have exclusively involved Thoroughbreds. The findings underscore the importance of routine cytogenetic screening of breeding animals.

Digital object identifier (DOI): 10.1111/rda.12636

Am J Hematol, 91(2), 233–237
February, 2016

Classic and extracavitary primary effusion lymphoma in 51 HIV-infected patients from a single institution.

Guillet, Stéphanie, Gérard, Laurence, Meignin, Véronique, Agbalika, Felix, Cuccini, Wendy, Denis, Blandine, Katlama, Christine, Galicier, Lionel, Oksenhendler, Eric

<p>Human immunodeficiency virus (HIV)-associated primary effusion lymphoma (PEL) is a rare B-cell non-Hodgkin lymphoma with poor prognosis. Lymphoma cells are always infected with human herpesvirus-8 (HHV-8) and in most cases coinfected with Epstein-Barr virus. In classic presentation, PEL is characterized by body cavity effusions with or without mass lesions. A variant with only extracavitary localization has also been described. We report on a large single-center series of patients with PEL in the era of combined antiretroviral therapy (cART). The main objective was to compare the characteristics and the outcome of patients with classic (n = 34) and extracavitary (n = 17) variant PEL. At PEL diagnosis, no major difference was observed between the two groups in terms of demographic and HIV characteristics. Extracavitary localizations were exclusively nodal in six patients and involved various organs in 11 patients. Another HHV-8-associated disease was observed in 31 patients, Kaposi sarcoma in 25, and multicentric Castleman disease in 18 patients, without difference between the two groups. Thirty-two patients were treated with CHOP associated with high-dose methotrexate, 13 were treated with CHOP-derived regimen alone, and six patients received low-dose/no chemotherapy. Complete remission was achieved in 21 (62 %) and seven (41 %) patients of the classic and extracavitary groups, respectively. The median overall survival (OS) was 10.2 months. Despite a higher disease-free survival in the extracavitary group, there was no difference in OS between the two variants. Based on this series, characteristics of classic and extracavitary variants were very close. Although prognosis of PEL remains very severe in cART era, the median survival compares favorably with earlier series.</p>

Digital object identifier (DOI): 10.1002/ajh.24251

Genet Sel Evol, 48, 12
2016

The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity.

Havelka, Miloš, Bytyutskyy, Dmytro, Symonová, Radka, Ráb, Petr, Flaj\vshans, Martin

<p>One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome.Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii.We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.</p>

Digital object identifier (DOI): 10.1186/s12711-016-0194-0

Comp Cytogenet, 10(1), 45–59
2016

Sex chromosome diversity in Armenian toad grasshoppers (Orthoptera, Acridoidea, Pamphagidae).

Bugrov, Alexander G., Jetybayev, Ilyas E., Karagyan, Gayane H., Rubtsov, Nicolay B.

Although previous cytogenetic analysis of Pamphagidae grasshoppers pointed to considerable karyotype uniformity among most of the species in the family, our study of species from Armenia has discovered other, previously unknown karyotypes, differing from the standard for Pamphagidae mainly in having unusual sets of sex chromosomes. Asiotmethis turritus (Fischer von Waldheim, 1833), Paranocaracris rubripes (Fischer von Waldheim, 1846), and Nocaracris cyanipes (Fischer von Waldheim, 1846) were found to have the karyotype 2n♂=16+neo-XY and 2n♀=16+neo-XX, the neo-X chromosome being the result of centromeric fusion of an ancient acrocentric X chromosome and a large acrocentric autosome. The karyotype of Paranothrotes opacus (Brunner von Wattenwyl, 1882) was found to be 2n♂=14+X1X2Y and 2n♀=14+X1X1X2X2., the result of an additional chromosome rearrangement involving translocation of the neo-Y and another large autosome. Furthermore, evolution of the sex chromosomes in these species has involved different variants of heterochromatinization and miniaturization of the neo-Y. The karyotype of Eremopeza festiva (Saussure, 1884), in turn, appeared to have the standard sex determination system described earlier for Pamphagidae grasshoppers, 2n♂=18+X0 and 2n♀=18+XX, but all the chromosomes of this species were found to have small second C-positive arms. Using fluorescent in situ hybridization (FISH) with 18S rDNA and telomeric (TTAGG)n DNA repeats to yield new data on the structural organization of chromosomes in the species studied, we found that for most of them, clusters of repeats homologous to 18S rDNA localize on two, three or four pairs of autosomes and on the X. In Eremopeza festiva, however, FISH with labelled 18S rDNA painted C-positive regions of all autosomes and the X chromosome; clusters of telomeric repeats localized primarily on the ends of the chromosome arms. Overall, we conclude that the different stages of neo-Y degradation revealed in the Pamphagidae species studied make the family a very promising and useful model for studying sex chromosome evolution.

Digital object identifier (DOI): 10.3897/CompCytogen.v10i1.6407