Publications

Filter by Keyword

Filter by Application

Filter by Product/Solution


Radiother Oncol, 95, 73-78
2010

Chromosomal aberrations in peripheral blood lymphocytes of prostatecancer patients treated with IMRT and carbon ions.

Carola Hartel, Anna Nikoghosyan, Marco Durante, Sylwester Sommer, Elena Nasonova, Claudia Fournier, Ryonfa Lee, Jürgen Debus, Daniela Schulz-Ertner, Sylvia Ritter

BACKGROUND AND PURPOSE: To investigate the cytogenetic damage in blood lymphocytes of patients treated for prostate cancer with different radiation qualities and target volumes. MATERIALS AND METHODS: Twenty patients receiving carbon-ion boost irradiation followed by IMRT or IMRT alone for the treatment of prostate cancer entered the study. Cytogenetic damage induced in peripheral blood lymphocytes of these patients was investigated at different times during the radiotherapy course using Giemsa staining and mFISH. A blood sample from each patient was taken before initiation of radiation therapy and irradiated in vitro to test for individual radiosensitivity. In addition, in vitro dose-effect curves for the induction of chromosomal exchanges by X-rays and carbon ions of different energies were measured. RESULTS: The yield of chromosome aberrations increased during the therapy course, and the frequency was lower in patients irradiated with carbon ions as compared to patients treated with IMRT with similar target volumes. A higher frequency of aberrations was measured by increasing the target volume. In vitro, high-LET carbon ions were more effective than X-rays in inducing aberrations and yielded a higher fraction of complex exchanges. The yield of complex aberrations observed in vivo was very low. CONCLUSION: The investigation showed no higher aberration yield induced by treatment with a carbon-ion boost. In contrast, the reduced integral dose to the normal tissue is reflected in a lower chromosomal aberration yield when a carbon-ion boost is used instead of IMRT alone. No cytogenetic #signature# of exposure to densely ionizing carbon ions could be detected in vivo.

Int J Radiat Biol, 85(11), 1051–1059
November, 2009

Response of human hematopoietic stem and progenitor cells to energeticcarbon ions.

Daniela Becker, Thilo Elsässer, Torsten Tonn, Erhard Seifried, Marco Durante, Sylvia Ritter, Claudia Fournier

To characterise the radiation response of human hematopoietic stem and progenitor cells (HSPC) with respect to X and carbon ion irradiation.HSPC from peripheral blood of healthy donors treated with granulocyte-colony stimulating factor (G-CSF) were enriched for the transmembrane glycoprotein CD34 (cluster of differentiation) and irradiated with X rays or carbon ions (29 keV/microm monoenergetic beam and 60-85 keV/microm spread-out Bragg peak), mimicking radiotherapy conditions. Apoptotic cell death, cell cycle progression and the frequency of chromosomal aberrations were determined.After radiation exposure no inhibition in the progression of the cell cycle was detected. However, an enhanced frequency of apoptotic cells and an increase in aberrant cells were observed, both effects being more pronounced for carbon ions than X rays, resulting in a relative biological effectiveness (RBE) of 1.4-1.7. The fraction of complex-type aberrations was higher following carbon ion exposure.RBE values of carbon ions are low, as expected for radiosensitive cells. The observed frequencies of apoptotic cells and chromosome aberrations in HSPC are similar to those reported for human peripheral blood lymphocytes suggesting that at least with respect to apoptosis and chromosomal aberrations mature lymphocytes reflect the respective radiation responses of their proliferating progenitors.

Science, 326(5957), 1230
November, 2009

Induced chromosomal proximity and gene fusions in prostate cancer.

Ram-Shankar Mani, Scott A Tomlins, Kaitlin Callahan, Aparna Ghosh, Mukesh K Nyati, Sooryanarayana Varambally, Nallasivam Palanisamy, Arul M Chinnaiyan

Gene fusions play a critical role in cancer progression. The mechanisms underlying their genesis and cell type specificity are not well understood. About 50\% of human prostate cancers display a gene fusion involving the 5' untranslated region of TMPRSS2, an androgen-regulated gene, and the protein-coding sequences of ERG, which encodes an erythroblast transformation-specific (ETS) transcription factor. By studying human prostate cancer cells with fluorescence in situ hybridization, we show that androgen signaling induces proximity of the TMPRSS2 and ERG genomic loci, both located on chromosome 21q22.2. Subsequent exposure of the cells to gamma irradiation, which causes DNA double-strand breaks, facilitates the formation of the TMPRSS2-ERG gene fusion. These results may help explain why TMPRSS2-ERG fusions are restricted to the prostate, which is dependent on androgen signaling.

Cancer Genet Cytogenet, 193(2), 123–126
September, 2009

A case of childhood acute myeloid leukemia AML (M5) with a neocentricchromosome neo(1)(qter–>q23 approximately 24::q23 approximately24–>q43–>neo–>q43–>qter) and tetrasomy of chromosomes 8 and 21.

de Figueiredo, Amanda Faria, Hasmik Mkrtchyan, Thomas Liehr, Eliane Maria Soares Ventura, de Jesus Marques-Salles, Terezinha, Neide Santos, Raul Corrêa Ribeiro, Eliana Abdelhay, Maria Luiza Macedo Silva

Hyperdiploidy is rarely observed in childhood acute myeloid leukemia (AML). Described here is the case of a 2(1/2)-year-old girl with AML-M5 and 51 chromosomes characterized by double tetrasomy of chromosomes 8 and 21 and also a neocentric derivative chromosome neo(1)(qter–>q23 approximately 24::q23 approximately 24–>q43–>neo–>q43–>qter). Little is known about the prognostic significance of these chromosomal abnormalities in childhood AML. In the actual case, complete remission was achieved after chemotherapy, which continued for 7 months. No acquired neocentric chromosome 1 has been described previously, even though neocentromere formation has been reported for other chromosomes in neoplasms.

Cancer Genet Cytogenet, 189(1), 59–62
February, 2009

A new chromosomal three-way rearrangement involving MLL masked bya t(9;19)(p11;p13) in an infant with acute myeloid leukemia.

de Jesus Marques-Salles, Terezinha, Thomas Liehr, Hasmik Mkrtchyan, Susana C Raimondi, de Souza, Mariana Tavares, de Figueiredo, Amanda Faria, Soraia Rouxinol, Fernanda C Jordy Macedo, Eliana Abdelhay, Neide Santos, Maria Luiza Macedo Silva

Infants diagnosed with acute myelogenous leukemia (AML) are likely to have subtypes M4 or M5 characterized by 11q23 abnormalities like a t(9;11)(p22;q23). Detection of all possible types of chromosomal abnormalities, including mixed lineage leukemia (MLL) gene rearrangements at 11q23, is of importance for the identification of biological subgroups, which might differ in drug resistance and/or clinical outcome. Here, we report the clinical, conventional banding and molecular cytogenetics data of a 6-month-old boy with an AML-M5 presenting with a unique cryptic rearrangement involving the MLL gene: a three-way t(9;19;11)(p11.2;p13.1;q23).

Mol Cytogenet, 2, 16
2009

Molecular cytogenetic characterisation of a mosaic add(12)(p13.3)with an inv dup(3)(q26.31 –> qter) detected in an autistic boy.

Isabel M Carreira, Joana B Melo, Carlos Rodrigues, Liesbeth Backx, Joris Vermeesch, Anja Weise, Nadezda Kosyakova, Guiomar Oliveira, Eunice Matoso

ABSTRACT: BACKGROUND: Inverted duplications (inv dup) of a terminal chromosome region are a particular subset of rearrangements that often results in partial tetrasomy or partial trisomy when accompanied by a deleted chromosome. Associated mosaicism could be the consequence of a post-zygotic event or could result from the correction of a trisomic conception. Tetrasomies of distal segments of the chromosome 3q are rare genetic events and their phenotypic manifestations are diverse. To our knowledge, there are only 12 cases reported with partial 3q tetrasomy. Generally, individuals with this genomic imbalance present mild to severe developmental delay, facial dysmorphisms and skin pigmentary disorders. RESULTS: We present the results of the molecular cytogenetic characterization of an unbalanced mosaic karyotype consisting of mos 46,XY,add(12)(p13.3) [56]/46,XY [44] in a previously described 11 years old autistic boy, re-evaluated at adult age. The employment of fluorescence in situ hybridization (FISH) and multicolor banding (MCB) techniques identified the extra material on 12p to be derived from chromosome 3, defining the additional material on 12p as an inv dup(3)(qter –> q26.3::q26.3 –> qter). Subsequently, array-based comparative genomic hybridization (aCGH) confirmed the breakpoint at 3q26.31, defining the extra material with a length of 24.92 Mb to be between 174.37 and 199.29 Mb. CONCLUSION: This is the thirteenth reported case of inversion-duplication 3q, being the first one described as an inv dup translocated onto a non-homologous chromosome. The mosaic terminal inv dup(3q) observed could be the result of two proposed alternative mechanisms. The most striking feature of this case is the autistic behavior of the proband, a characteristic not shared by any other patient with tetrasomy for 3q26.31 –> 3qter. The present work further illustrates the advantages of the use of an integrative cytogenetic strategy, composed both by conventional and molecular techniques, on providing powerful information for an accurate diagnosis. This report also highlights a chromosome region potentially involved in autistic disorders.

Cancer Genet Cytogenet, 188, 1- 25
2009

Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function.

L. Li, A.A. McCormack, J.M. Nicholson, A. Fabarius, R. Hehlmann, R.K. Sachs, P.H. Duesberg

The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.

EMBO J, 28(7), 799-809
2009

Control of telomere length by a trimming mechanism that involves generation of t-circles

HA Pickett, AJ Cesare, RL Johnston, AA Neumann, RR Reddel

Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.

Mol Cytogenet, 2, 7
2009

Unbalanced chromosome 1 abnormalities leading to partial trisomy1q in four infants with Down syndrome and acute megakaryocytic leukemia.

Maria Luiza Macedo Silva, do Socorro Pombo-de-Oliveira, Maria, Susana C Raimondi, Hasmik Mkrtchyan, Eliana Abdelhay, de Figueiredo, Amanda Faria, de Souza, Mariana Tavares, Daniela Ribeiro Ney Garcia, de Ventura, Eliane Maria Soares, de Sousa, Adriana Martins, Thomas Liehr

ABSTRACT: BACKGROUND: Children with Down syndrome (DS) have an increased risk of childhood acute leukemia, especially acute megakaryoblastic leukemia (AMKL) also called acute myeloid leukemia (AML) type M7. Here four yet unreported infants with such malignancies are reported. RESULTS: An unbalanced translocation involving chromosome 1 was identified by GTG banding in all cases. These were characterized in more detail by molecular cytogenetic approaches. Additional molecular analysis revealed in three of the four cases mutations in exon 2 of the GATA binding protein 1 (globin transcription factor 1), located in Xp11.23. CONCLUSION: Our results corroborate that abnormalities of chromosome 1 are common in DS-associated AMKL. Whether this chromosomal region contains gene(s) involved in hematopoietic malignant transformation remains to be determined.

Mol Cytogenet, 2, 15
2009

Application of molecular cytogenetic techniques to clarify apparentlybalanced complex chromosomal rearrangements in two patients withan abnormal phenotype: case report.

de Vree, Paula Jp, Marleen Eh Simon, van Dooren, Marieke F, Gerda Ht Stoevelaar, José Tw Hilkmann, Michel A Rongen, Gido Cm Huijbregts, Annemieke Jmh Verkerk, Pino J Poddighe

ABSTRACT: BACKGROUND: Complex chromosomal rearrangements (CCR) are rare cytogenetic findings that are difficult to karyotype by conventional cytogenetic analysis partially because of the relative low resolution of this technique. High resolution genotyping is necessary in order to identify cryptic imbalances, for instance near the multiple breakpoints, to explain the abnormal phenotype in these patients. We applied several molecular techniques to elucidate the complexity of the CCRs of two adult patients with abnormal phenotypes. RESULTS: Multicolour fluorescence in situ hybridization (M-FISH) showed that in patient 1 the chromosomes 1, 10, 15 and 18 were involved in the rearrangement whereas for patient 2 the chromosomes 5, 9, 11 and 13 were involved. A 250 k Nsp1 SNP-array analysis uncovered a deletion in chromosome region 10p13 for patient 1, harbouring 17 genes, while patient 2 showed no pathogenic gains or losses. Additional FISH analysis with locus specific BAC-probes was performed, leading to the identification of cryptic interstitial structural rearrangements in both patients. CONCLUSION: Application of M-FISH and SNP-array analysis to apparently balanced CCRs is useful to delineate the complex chromosomal rearrangement in detail. However, it does not always identify cryptic imbalances as an explanation for the abnormal phenotype in patients with a CCR.

PLoS One, 4, 0- 0
2009

Human telomere length correlates to the size of the associated chromosome arm.

J.L. Wise, R.J. Crout, D.W. McNeil, R.J. Weyant, M.L.Marazita, S.L. Wenger

The majority of human telomere length studies have focused on the overall length of telomeres within a cell. In fact, very few studies have examined telomere length for individual chromosome arms. The objective of this study was to examine the relationship between chromosome arm size and the relative length of the associated telomere. Quantitative Fluorescence In Situ Hybridization (Q-FISH) was used to measure the relative telomere length of each chromosome arm in metaphases from cultured lymphocytes of 17 individuals. A statistically significant positive correlation (r = 0.6) was found between telomere length and the size of the associated chromosome arm, which was estimated based on megabase pair measurements from http://www.ncbi.nlm.nih.gov/projects/mapview/.

Diabetes, 57(11), 2950–2957
November, 2008

Lymphocytes of type 2 diabetic women carry a high load of stablechromosomal aberrations: a novel risk factor for disease-relatedearly death.

Bernhard O. Boehm, Peter Möller, Josef Högel, Bernhard R. Winkelmann, Wilfried Renner, Silke Rosinger, Ursula Seelhorst, Britta Wellnitz, Winfried März, Julia Melzner, Silke Brüderlein

OBJECTIVE—Diabetes is associated with an increased risk of death in women. Oxidative stress due to chronic hyperglycemia leads to the generation of reactive oxygen species and loss of chromosomal integrity. To clarify whether diabetes is a premature aging syndrome, we determined telomere erosion dynamics and occurrence of structural chromosomal aberrations in women of the Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. RESEARCH DESIGN AND METHODS—Telomere lengths and karyotypes were examined in peripheral blood mononuclear cells. Regarding these parameters, surviving and deceased type 2 diabetic women of the LURIC study were compared with nondiabetic LURIC women with or without coronary heart disease and with healthy female control subjects. RESULTS—Significantly enhanced telomere attrition was seen in all LURIC subjects compared with healthy control subjects. Although the average telomere-length loss is equivalent to well >10 years of healthy aging, telomere erosion was not associated with outcome within the LURIC cohort. However, strikingly high numbers of stable chromosomal aberrations were found in type 2 diabetic women but not in LURIC disease control subjects or in healthy individuals. Furthermore, within the younger age- groups, deceased type 2 diabetes patients had significantly more marker chromosomes than the surviving type 2 diabetic patients. CONCLUSIONS—All women at high risk for cardiovascular death have accelerated telomere erosion, not caused by type 2 diabetes per se but likely linked to other risk factors, including dyslipidemia. By contrast, the occurrence of marker chromosomes is associated with type 2 diabetes and is a novel risk factor for type 2 diabetes–related early death. Type 2 diabetes is characterized by increased morbidity and all-cause mortality (1,2). The combination of excess caloric intake and reduced physical activity leading to obesity, dyslipidemia, and hypertension increases the risk for diabetes and coronary heart disease (CHD). Recent data show that among diabetic men, the mortality rate has decreased significantly, whereas in diabetic women, no such trend was found (3). The all-cause mortality rate difference between diabetic and nondiabetic women is considerable. Therefore, the combination of diabetes with multiple risk factors identifies women at particularly high risk (2,4). The relative risk for morbidity and mortality in women with diabetes is increased compared with nondiabetic control subjects (2,5). Diabetes may therefore be regarded as a premature aging syndrome in which the overall metabolic shift leads to genotoxic stress that results in loss of chromosomal integrity (rev. in 6). Oxidative stress plays a crucial role in the pathogenesis of type 2 diabetes and in diabetes-associated complications. The generation of reactive oxygen species (ROS) is a common downstream mechanism whereby multiple by-products of glucose and (pro)inflammatory molecules exert adverse effects (7–11). DNA damage and telomere attrition can serve as markers of these processes and, consequently, mirror the pace of biological aging (rev. in 12–14). Hypothesizing along these lines, we studied telomere erosion dynamics and/or the occurrence of structural chromosomal aberrations in women with type 2 diabetes who were participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) prospective cohort study (15). Life expectancy within the LURIC female cohort falls short by ∼10 years compared with the general female population in Germany. Telomeric erosion was much further advanced in all LURIC women, irrespective of type 2 diabetes, compared with age-matched control subjects, the difference amounting to >10 life-years. We further found a strikingly enhanced number of structural chromosomal aberrations in the peripheral lymphocytes of women with type 2 diabetes that was diabetes specific and, within the younger age-groups, associated with mortality.

Mod Pathol, 21(4), 498–504
April, 2008

Interphase cytogenetic analysis with centromeric probes for chromosomes1, 2, 6, 10, and 17 in 11 tumors from a patient with bilateral renaloncocytosis.

Paolo Cossu-Rocca, John N Eble, Shaobo Zhang, Stephen M Bonsib, Guido Martignoni, Matteo Brunelli, Liang Cheng

Renal oncocytosis is characterized by the presence of multiple tumors with oncocytic features, often associated with small clusters of tubule-like structures with oncocytic change. The morphologic features of the oncocytic nodules encompass a spectrum of appearances, with patterns typical of renal oncocytoma or classic chromophobe renal cell carcinoma, as well as 'hybrid' tumors with features resembling both oncocytoma and chromophobe renal cell carcinoma. We utilized interphase cytogenetic methods to study 11 tumors from the kidneys of a 45-year-old woman. The tumors included morphologically classical oncocytomas and 'hybrid' tumors with features reminiscent of chromophobe carcinoma. The kidneys also showed foci of oncocytic change in renal tubules. Fluorescence in situ hybridization was performed with centromeric probes for chromosomes 1, 2, 6, 10, and 17 in each of the 11 tumors to determine whether or not there were losses of the chromosomes that are most frequently lost in chromophobe renal cell carcinomas. Neoplastic nuclei from each tumor were evaluated for the number of hybridization signals and scored according to the percentage of nuclei with one, two, and three or more signals. The normal renal parenchyma surrounding the tumors was used as control tissue. All 11 tumors from this patient with renal oncocytosis showed no loss of any of the chromosomes 1, 2, 6, 10, or 17, a pattern identical to that found in normal control tissues. These observations weigh against the concept that hybrid tumors of oncocytosis are closely related to chromophobe renal cell carcinoma.

Blood, 111(8), 4329–4337
April, 2008

High EVI1 levels predict adverse outcome in acute myeloid leukemia:prevalence of EVI1 overexpression and chromosome 3q26 abnormalitiesunderestimated.

Sanne Lugthart, van Drunen, Ellen, van Norden, Yvette, van Hoven, Antoinette, Claudia A J Erpelinck, Peter J M Valk, H. Berna Beverloo, Bob Löwenberg, Ruud Delwel

<p>Inappropriate expression of EVI1 (ecotropic virus integration-1), in particular splice form EVI1-1D, through chromosome 3q26 lesions or other mechanisms has been implicated in the development of high-risk acute myeloid leukemia (AML). To validate the clinical relevance of EVI1-1D, as well as of the other EVI1 splice forms and the related MDS1/EVI1 (ME) gene, real-time quantitative polymerase chain reaction was performed in 534 untreated adults with de novo AML. EVI1-1D was highly expressed in 6% of cases (n = 32), whereas 7.8% were EVI1(+) (n = 41) when all splice variants were taken into account. High EVI1 predicted a distinctly worse event-free survival (HR = 1.9; P = .002) and disease-free survival (HR = 2.1, P = .006) following multivariate analysis. Importantly, we distinguished a subset of EVI1(+) cases that lacked expression of ME (EVI1(+)ME(-); n = 17) from cases that were ME(+) (EVI1(+)ME(+); n = 24). The atypical EVI1(+)ME(-) expression pattern exhibited cytogenetically detectable chromosomal 3q26 breakpoints in 8 cases. Fluorescence in situ hybridization revealed 7 more EVI1(+)ME(-) cases that carried cryptic 3q26 breakpoints, which were not found in the EVI1(+)ME(+) group. EVI1(+)ME(-) expression predicts an extremely poor prognosis distinguishable from the general EVI1(+) AML patients (overall survival [OS]: P</p>

Cancer Genet Cytogenet, 182(1), 56–60
April, 2008

Banding and molecular cytogenetic studies detected a CBFB-MYH11 fusion gene that appeared as abnormal chromosomes 1 and 16 in a baby with acute myeloid leukemia FAB M4-Eo.

Maria Luiza Macedo Silva, Susana C Raimondi, Eliana Abdelhay, Madeleine Gross, Hasmik Mkrtchyan, de Figueiredo, Amanda Faria, Raul C Ribeiro, de Jesus Marques-Salles, Terezinha, Elaine S Sobral, Marcelo Poirot Gerardin Land, Thomas Liehr

<p>The acute myeloid leukemia (AML) subtype M4Eo occurs in 5% of all AML cases and is usually associated with either an inv(16)(p13.1q22) or a t(16;16)(p13.1;q22) chromosomal abnormality. At the molecular level, these abnormalities generate a CBFB-MYH11 fusion gene. Patients with this genetic alteration are usually assigned to a low-risk group and thus receive standard chemotherapy. AML-M4Eo is rarely found in infants. We describe clinical, conventional banding, and molecular cytogenetic data for a 12-month-old baby with AML-M4Eo and a chimeric CBFB-MYH11 fusion gene masked by a novel rearrangement between chromosomes 1 and 16. This rearrangement characterizes a new type of inv(16)(p13.1q22) masked by a chromosome translocation.</p>

Digital object identifier (DOI): 10.1016/j.cancergencyto.2007.12.014

Mol Cancer, 7, 76
2008

Human ESCs predisposition to karyotypic instability: Is a matterof culture adaptation or differential vulnerability among hESC linesdue to inherent properties?

Puri Catalina, Rosa Montes, Gertru Ligero, Laura Sanchez, de la Cueva, Teresa, Clara Bueno, Paola E Leone, Pablo Menendez

<p>BACKGROUND: The use of human embryonic stem cells (hESCs) in research is increasing and hESCs hold the promise for many biological, clinical and toxicological studies. Human ESCs are expected to be chromosomally stable since karyotypic changes represent a pitfall for potential future applications. Recently, several studies have analysed the genomic stability of several hESC lines maintained after prolonged in vitro culture but controversial data has been reported. Here, we prompted to compare the chromosomal stability of three hESC lines maintained in the same laboratory using identical culture conditions and passaging methods. RESULTS: Molecular cytogenetic analyses performed in three different hESC lines maintained in parallel in identical culture conditions revealed significant differences among them in regard to their chromosomal integrity. In feeders, the HS181, SHEF-1 and SHEF-3 hESC lines were chromosomally stable up to 185 passages using either mechanical or enzymatic dissection methods. Despite the three hESC lines were maintained under identical conditions, each hESC line behaved differently upon being transferred to a feeder-free culture system. The two younger hESC lines, HS181 (71 passages) and SHEF-3 (51 passages) became chromosomally unstable shortly after being cultured in feeder-free conditions. The HS181 line gained a chromosome 12 by passage 17 and a marker by passage 21, characterized as a gain of chromosome 20 by SKY. Importantly, the mosaicism for trisomy 12 gradually increased up to 89% by passage 30, suggesting that this karyotypic abnormality provides a selective advantage. Similarly, the SHEF-3 line also acquired a trisomy of chromosome 14 as early as passage 10. However, this karyotypic aberration did not confer selective advantage to the genetically abnormal cells within the bulk culture and the level of mosaicism for the trisomy 14 remained overtime between 15%-36%. Strikingly, however, a much older hESC line, SHEF-1, which was maintained for 185 passages in feeders did not undergo any numerical or structural chromosomal change after 30 passages in feeder-free culture and over 215 passages in total. CONCLUSION: These results support the concept that feeder-free conditions may partially contribute to hESC chromosomal changes but also confirm the hypothesis that regardless of the culture conditions, culture duration or splitting methods, some hESC lines are inherently more prone than others to karyotypic instability.</p>

Mol Cytogenet, 1, 20
2008

Unusually stable abnormal karyotype in a highly aggressive melanomanegative for telomerase activity.

Sarantis Gagos, George Papaioannou, Maria Chiourea, Sophie Merk-Loretti, Charles-Edward Jefford, Panagiota Mikou, Irmgard Irminger-Finger, Anna Liossi, Jean-Louis Blouin, Sophie Dahoun

ABSTRACT: Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and quantitative Fluorescence in Situ Hybridization (FISH). Interestingly this tumor had no detectable telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial telomere lengthening pathway.

Radiation Research, 170, 458- 466
2008

Chromosome inter- and intrachanges detected by arm-specific DNA probes in the progeny of human lymphocytes exposed to energetic heavy ions.

D. Pignalosa, A. Bertucci, G. Gialanella, G. Grossi, L. Manti, M. Pugliese, P. Scampoli, M. Durante

We measured residual cytogenetic damage in the progeny of human peripheral blood lymphocytes exposed to 1 GeV/ nucleon iron ions or gamma rays. Arm-specific DNA probes for chromosome 1 were used to detect aberrations as a function of dose in cells harvested 144 h after exposure. In addition, arm-specific mFISH was applied to samples exposed to a single dose of 2 Gy. These methods allowed the detection of interarm intrachanges (pericentric inversions) in addition to interchanges. The ratio of these types of aberrations (F ratio) has been proposed as a fingerprint of exposure to densely ionizing radiation. The fractions of aberrant cells in the progeny of cells exposed to iron ions were similar to those in the population exposed to gamma rays, possibly because many rearrangements induced by heavy ions ultimately lead to cell death. Simple inter- and intrachanges were also similar, but more complex rearrangements were found in cells that survived after exposure to iron ions. We did not find a significant difference in the ratio of simple interchanges to simple intrachanges for the two radiation types. However, iron ions induced a much higher frequency of events involving both inter- and intrachanges. We conclude that these complex rearrangements represent a hallmark of exposure to heavy ions and may be responsible of the decrease of the F ratio with increasing LET reported in the literature in some in vitro and in vivo experiments.

BMC Genomics, 9, 237
2008

A novel resource for genomics of Triticeae: BAC library specificfor the short arm of rye (Secale cereale L.) chromosome 1R (1RS).

Hana Simková, Jan Safár, Pavla Suchánková, Pavlína Kovárová, Jan Bartos, Marie Kubaláková, Jaroslav Janda, Jarmila Cíhalíková, Rohit Mago, Tamas Lelley, Jaroslav Dolezel

<p>BACKGROUND: Genomics of rye (Secale cereale L.) is impeded by its large nuclear genome (1C approximately 7,900 Mbp) with prevalence of DNA repeats (&gt; 90%). An attractive possibility is to dissect the genome to small parts after flow sorting particular chromosomes and chromosome arms. To test this approach, we have chosen 1RS chromosome arm, which represents only 5.6% of the total rye genome. The 1RS arm is an attractive target as it carries many important genes and because it became part of the wheat gene pool as the 1BL.1RS translocation. RESULTS: We demonstrate that it is possible to sort 1RS arm from wheat-rye ditelosomic addition line. Using this approach, we isolated over 10 million of 1RS arms using flow sorting and used their DNA to construct a 1RS-specific BAC library, which comprises 103,680 clones with average insert size of 73 kb. The library comprises two sublibraries constructed using HindIII and EcoRI and provides a deep coverage of about 14-fold of the 1RS arm (442 Mbp). We present preliminary results obtained during positional cloning of the stem rust resistance gene SrR, which confirm a potential of the library to speed up isolation of agronomically important genes by map-based cloning. CONCLUSION: We present a strategy that enables sorting short arms of several chromosomes of rye. Using flow-sorted chromosomes, we have constructed a deep coverage BAC library specific for the short arm of chromosome 1R (1RS). This is the first subgenomic BAC library available for rye and we demonstrate its potential for positional gene cloning. We expect that the library will facilitate development of a physical contig map of 1RS and comparative genomics of the homoeologous chromosome group 1 of wheat, barley and rye.</p>

Medical Hypotheses, 0- 0
2008

Defining the steps that lead to cancer: Replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.

R. Stindl

Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the ‘law of genotype–phenotype correlation’, since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how ‘tumor-unspecific’ aneuploidy leads to cancer.

Digital object identifier (DOI): http://dx.doi.org/10.1016/j.mehy.2008.01.010