Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution


BMC plant biology, 19, 183
May, 2019

Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background.

Devi, Urmila, Grewal, Surbhi, Yang, Cai-Yun, Hubbart-Edwards, Stella, Scholefield, Duncan, Ashling, Stephen, Burridge, Amanda, King, Ian P, King, Julie

Triticum timopheevii (2n = 4x = 28; A<sup>t</sup>A<sup>t</sup>GG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the A and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the A and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the A and G genomes of T. timopheevii that have been previously only detected through cytological techniques. In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.

Digital object identifier (DOI): 10.1186/s12870-019-1785-z

Microbiological research, 221, 28–35
April, 2019

Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum.

Pena, Lorena C, Jungklaus, Gustavo H, Savi, Daiani C, Ferreira-Maba, Lisandra, Servienski, André, Maia, Beatriz H L N S, Annies, Vinicius, Galli-Terasawa, Lygia V, Glienke, Chirlei, Kava, Vanessa

Endophytic fungi belonging to Muscodor genus are considered as promising alternatives to be used in biological control due to the production of volatile organic compounds (VOCs). The strains LGMF1255 and LGMF1256 were isolated from the medicinal plant Schinus terebinthifolius and, by morphological data and phylogenetic analysis, identified as belonging to Muscodor genus. Phylogenetic analysis suggests that strain LGMF1256 is a new species, which is herein introduced as Muscodor brasiliensis sp. nov. The analysis of VOCs production revealed that compounds phenylethyl alcohol, α-curcumene, and E (β) farnesene until now has been reported only from M. brasiliensis, data that supports the classification of strain LGMF1256 as a new species. M. brasiliensis completely inhibited the phytopathogen P. digitatum in vitro. We also evaluated the ability of VOCs from LGMF1256 to inhibit the development of green mold symptoms by inoculation of P. digitatum in detached oranges. M. brasiliensis reduced the severity of diseases in 77%, and showed potential to be used for fruits storage and transportation to prevent the green mold symptoms development, eventually reducing the use of fungicides.

Digital object identifier (DOI): 10.1016/j.micres.2019.01.002

Biochemical and biophysical research communications, 511, 658–664
April, 2019

Distinctive Krebs cycle remodeling in iPSC-derived neural and mesenchymal stem cells.

Benlamara, Sarah, Aubry, Laetitia, Fabregue, Julien, Bénit, Paule, Rustin, Pierre, Rak, Malgorzata

Mitochondria play a vital role in proliferation and differentiation and their remodeling in the course of differentiation is related to the variable energy and metabolic needs of the cell. In this work, we show a distinctive mitochondrial remodeling in human induced pluripotent stem cells differentiated into neural or mesenchymal progenitors. While leading to upregulation of the citrate synthase-α-ketoglutarate dehydrogenase segment of the Krebs cycle and increased respiratory chain activities and respiration in the mesenchymal stem cells, the remodeling in the neural stem cells resulted in downregulation of α-ketoglutarate dehydrogenase, upregulation of isocitrate dehydrogenase 2 and the accumulation of α-ketoglutarate. The distinct, lineage-specific changes indicate an involvement of these Krebs cycle enzymes in cell differentiation.

Digital object identifier (DOI): 10.1016/j.bbrc.2019.02.033

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 129, 181–189
March, 2019

Multi- and unilamellar liposomal encapsulation of ciprofloxacin as ways to modify its phototoxicity and photodegradation.

Zgadzaj, A, Giebułtowicz, J, Gubernator, J, Podbielska, M, Sommer, S, Zaremba-Czogalla, M, Nałęcz-Jaweckia, G

Liposomes are vesicular preparations that improve bioavailability of many pharmaceuticals, used even in ocular therapy. In addition, it is well documented that vesicular carriers could affect the photodegradation of molecules encapsulated inside, which is especially important for drugs that may exhibit phototoxicity when they are applied topically on sensitive light-exposed tissues. In this study, we investigated the effect of ciprofloxacin encapsulation into liposomes on its photodegradation, phototoxicity and photogenotoxicity in vitro at the concentration ranges applied in ophthalmology. We tested two variants of liposomes: large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) in comparison to antibiotic solutions without phospholipids (CPX). On the basis of our research, the kinetics of ciprofloxacin photolysis was the fastest in formulations with vesicles with low drug-to-lipid ratio. Depending on vesicles type (drug-to-lipid ratio, MLV or LUV) and time of irradiation different degradants were produced. We proposed structures of the novel ciprofloxacin photolysis products characteristic for vesicles. We did not notice any photoprotective effect of application of ciprofloxacin encapsulation into liposomes, but it significantly affected the photodegradation product profile of the drug and the Photo-Irritation-Factor of the vesicular preparations. In the MTT and micronucleus assays impact of encapsulation was not as clearly visible.

Digital object identifier (DOI): 10.1016/j.ejps.2019.01.006

Journal of cell science, 132
March, 2019

Synthetic lethality of cytolytic HSV-1 in cancer cells with ATRX and PML deficiency.

Han, Mingqi, Napier, Christine E, Frölich, Sonja, Teber, Erdahl, Wong, Ted, Noble, Jane R, Choi, Eugene H Y, Everett, Roger D, Cesare, Anthony J, Reddel, Roger R

Cancers that utilize the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance are often difficult to treat and have a poor prognosis. They are also commonly deficient for expression of ATRX protein, a repressor of ALT activity, and a component of promyelocytic leukemia nuclear bodies (PML NBs) that are required for intrinsic immunity to various viruses. Here, we asked whether ATRX deficiency creates a vulnerability in ALT cancer cells that could be exploited for therapeutic purposes. We showed in a range of cell types that a mutant herpes simplex virus type 1 (HSV-1) lacking ICP0, a protein that degrades PML NB components including ATRX, was ten- to one thousand-fold more effective in infecting ATRX-deficient cells than wild-type ATRX-expressing cells. Infection of co-cultured primary and ATRX-deficient cancer cells revealed that mutant HSV-1 selectively killed ATRX-deficient cells. Sensitivity to mutant HSV-1 infection also correlated inversely with PML protein levels, and we showed that ATRX upregulates PML expression at both the transcriptional and post-transcriptional levels. These data provide a basis for predicting, based on ATRX or PML levels, which tumors will respond to a selective oncolytic herpesvirus.

Digital object identifier (DOI): 10.1242/jcs.222349

Cell death & disease, 10, 186
February, 2019

Type 3 inositol 1,4,5-trisphosphate receptor has antiapoptotic and proliferative role in cancer cells.

Rezuchova, Ingeborg, Hudecova, Sona, Soltysova, Andrea, Matuskova, Miroslava, Durinikova, Erika, Chovancova, Barbora, Zuzcak, Michal, Cihova, Marina, Burikova, Monika, Penesova, Adela, Lencesova, Lubomira, Breza, Jan, Krizanova, Olga

Although the involvement of type 1 (IP R1) and type 2 (IP R2) inositol 1,4,5-trisphosphate receptors in apoptosis induction has been well documented in different cancer cells and tissues, the function of type 3 IP R (IP R3) is still elusive. Therefore, in this work we focused on the role of IP R3 in tumor cells in vitro and in vivo. We determined increased expression of this receptor in clear cell renal cell carcinoma compared to matched unaffected part of the kidney from the same patient. Thus, we hypothesized about different functions of IP R3 compared to IP R1 and IP R2 in tumor cells. Silencing of IP R1 prevented apoptosis induction in colorectal cancer DLD1 cells, ovarian cancer A2780 cells, and clear cell renal cell carcinoma RCC4 cells, compared to apoptosis in cells treated with scrambled siRNA. As expected, silencing of IP R3 and subsequent apoptosis induction resulted in increased levels of apoptosis in all these cells. Further, we prepared a DLD1/IP R3_del cell line using CRISPR/Cas9 gene editing method. These cells were injected into nude mice and tumor's volume was compared with tumors induced by DLD1 cells. Lower volume of tumors originated from DLD1/IP R3_del cells was observed after 12 days, compared to wild type DLD1 cells. Also, the migration of these cells was lesser compared to wild type DLD1 cells. Apoptosis under hypoxic conditions was more pronounced in DLD1/IP R3_del cells than in DLD1 cells. These results clearly show that IP R3 has proliferative and anti-apoptotic effect in tumor cells, on contrary to the pro-apoptotic effect of IP R1.

Digital object identifier (DOI): 10.1038/s41419-019-1433-4

Journal of applied genetics, 60, 63–70
February, 2019

Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours.

Vozdova, Miluse, Kubickova, Svatava, Cernohorska, Halina, Fröhlich, Jan, Fictum, Petr, Rubes, Jiri

Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.

Digital object identifier (DOI): 10.1007/s13353-018-0471-4

Cells, 8
January, 2019

Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest.

Coluzzi, Elisa, Leone, Stefano, Sgura, Antonella

Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this study, we wanted to understand the mechanisms by which oxidative damage causes telomere dysfunction and senescence in human primary fibroblasts. After acute oxidative stress at telomeres, our data demonstrated a reduction in TRF1 and TRF2, which are involved in proper telomere replication and T-loop formation, respectively. Furthermore, we observed a higher level of γH2AX with respect to 53BP1 at telomeres, suggesting a telomeric replication fork stall rather than double-strand breaks. To confirm this finding, we studied the replication of telomeres by Chromosome Orientation-FISH (CO-FISH). The data obtained show an increase in unreplicated telomeres after hydrogen peroxide treatment, corroborating the idea that the presence of 8-oxoG can induce replication fork arrest at telomeres. Lastly, we analyzed the H3K9me3 histone mark after oxidative stress at telomeres, and our results showed an increase of this marker, most likely inducing the heterochromatinization of telomeres. These results suggest that 8-oxoG is fundamental in oxidative stress-induced telomeric damage, principally causing replication fork arrest.

Digital object identifier (DOI): 10.3390/cells8010019

Annals of laboratory medicine, 39, 91–95
January, 2019

Dose Estimation Curves Following In Vitro X-ray Irradiation Using Blood From Four Healthy Korean Individuals.

Jang, Mi Ae, Han, Eun Ae, Lee, Jin Kyung, Cho, Kwang Hwan, Shin, Hee Bong, Lee, You Kyoung

Cytogenetic dosimetry is useful for evaluating the absorbed dose of ionizing radiation based on analysis of radiation-induced chromosomal aberrations. We created two types of dose-response calibration curves for dicentric chromosomes (DC) and translocations (TR) induced by X-ray irradiation, using an electron linear accelerator, which is the most frequently used medical device in radiotherapy. We irradiated samples from four healthy Korean individuals and compared the resultant curves between individuals. Aberration yields were studied in a total of 31,800 and 31,725 metaphases for DC and TR, respectively, obtained from 11 X-ray irradiation dose-points (0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy). The dose-response relationship followed a linear-quadratic equation, Y=C+αD+βD², with the coefficients C=0.0011 for DC and 0.0015 for TR, α =0.0119 for DC and 0.0048 for TR, and β=0.0617 for DC and 0.0237 for TR. Correlation coefficients between irradiation doses and chromosomal aberrations were 0.971 for DC and 0.6 for TR, indicating a very strong and a moderate correlation, respectively. This is the first study implementing cytogenetic dosimetry following exposure to ionizing X-radiation.

Digital object identifier (DOI): 10.3343/alm.2019.39.1.91

Chemosphere, 215, 703–709
January, 2019

Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications.

Klingelfus, T, Disner, G R, Voigt, C L, Alle, L F, Cestari, M M, Leme, D M

Genotoxic effects of nanomaterials (NMs) have been controversially reported in literature, and the mode of action (MoA) via DNA oxidation is cited as the main damage caused by them. Evidence of nano-silver as a crosslinker has been previously reported by the present research team in an in vivo fish genotoxicity study. Thus, aiming to confirm the evidence about NMs as crosslinker agent, the present investigation elucidated the genotoxic potential of NMs and their genotoxic MoA through in vitro assay with RTG-2 cells line (rainbow trout gonadal) by exposure to nano-silver (PVP-coated) and nano-titanium. The types and levels of DNA damage were assessed by the Comet assay (standard alkaline, hOGG1-modified alkaline, and two crosslink-modified alkaline versions). It was demonstrated that the use of the standard alkaline Comet assay alone may inaccurately predict the genotoxicity of NMs since oxidative and crosslink DNA damages were also verified in RTG-2 cells when assessed by the modified versions of the alkaline protocol. More importantly, it was confirmed that both nano-silver and nano-titanium acted as DNA-protein crosslinkers through the Comet assay version with proteinase K. As both nano-silver and nano-titanium present a great risk to aquatic life, these findings reinforce the need of genotoxicity testing strategies that encompass the assessment of different types of DNA damage, in order to ensure an accurate prediction of the genotoxic potential of NMs.

Digital object identifier (DOI): 10.1016/j.chemosphere.2018.10.118

The journal of pathology. Clinical research, 5, 63–78
January, 2019

Combined epithelial marker analysis of tumour budding in stage II colorectal cancer.

Slik, Khadija, Blom, Sami, Turkki, Riku, Välimäki, Katja, Kurki, Samu, Mustonen, Harri, Haglund, Caj, Carpén, Olli, Kallioniemi, Olli, Korkeila, Eija, Sundström, Jari, Pellinen, Teijo

Tumour budding predicts survival of stage II colorectal cancer (CRC) and has been suggested to be associated with epithelial-to-mesenchymal transition (EMT). However, the underlying molecular changes of tumour budding remain poorly understood. Here, we performed multiplex immunohistochemistry (mIHC) to phenotypically profile tumours using known EMT-associated markers: E-cadherin (adherence junctions), integrin β4 (ITGB4; basement membrane), ZO-1 (tight junctions), and pan-cytokeratin. A subpopulation of patients showed high ITGB4 expression in tumour buds, and this coincided with a switch of ITGB4 localisation from the basal membrane of intact epithelium to the cytoplasm of budding cells. Digital image analysis demonstrated that tumour budding with high ITGB4 expression in tissue microarray (TMA) cores correlated with tumour budding assessed from haematoxylin and eosin (H&amp;E) whole sections and independently predicted poor disease-specific survival in two independent stage II CRC cohorts (hazard ratio [HR] = 4.50 (95% confidence interval [CI] = 1.50-13.5), n = 232; HR = 3.52 (95% CI = 1.30-9.53), n = 72). Furthermore, digitally obtained ITGB4-high bud count in random TMA cores was better associated with survival outcome than visual tumour bud count in corresponding H&amp;E-stained samples. In summary, the mIHC-based phenotypic profiling of human tumour tissue shows strong potential for the molecular characterisation of tumour biology and for the discovery of novel prognostic biomarkers.

Digital object identifier (DOI): 10.1002/cjp2.119

Cells, 8(7), 708
2019

X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells

De Vitis, M., Berardinelli, F., Coluzzi, E, Marinaccio, J.and O’Sullivan, R.J.and Sgura, A.

Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.

Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 847, 503087
2019

Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications

Ryana, Terri L., Escalonaa, Maria B., Smith, Tammy L., Albanese, Joseph, Iddinsa, Carol J., Balajee, Adayabalam S.

Dicentric Chromosome Assay (DCA) is the most preferred cytogenetic technique for absorbed radiation dose assessment in exposed humans. However, DCA is somewhat impractical for triage application owing to its labor intensive and time consuming nature. Although lymphocyte culture for 48 h <em>in vitro</em> is inevitable for DCA, manual scoring of dicentric chromosomes (DCs) requires an additional time of 24–48 h, making the overall turnaround time of 72–96 h for dose estimation. To accelerate the speed of DC analysis for dose estimation, an automated tool was optimized and validated for triage mode of scoring. Several image training files were created to improve the specificity of automated DC analysis algorithm. Accuracy and efficiency of the automated (unsupervised) DC scoring was compared with the semi-automated scoring that involved human verification and correction of DCs (elimination of false positives and inclusion of true positives). DC scoring was performed by both automated and semi-automated modes for different doses of X-rays and γ-rays (0 Gy–5 Gy). Biodoses estimated from the frequencies of DCs detected by both automated (unsupervised) and semi-automated (supervised) scoring modes were grossly similar to the actual delivered doses in the range of 0.5 to 3 Gy of low LET radiation. We suggest that the automated DC tool can be effectively used for large scale radiological/nuclear incidents where a rapid segregation is essential for prioritizing moderately or severely exposed humans to receive appropriate medical countermeasures.

Digital object identifier (DOI): https://doi.org/10.1016/j.mrgentox.2019.503087

Radiation protection dosimetry, 182, 139–145
December, 2018

DEVELOPMENT OF A MINIATURIZED VERSION OF DICENTRIC CHROMOSOME ASSAY TOOL FOR RADIOLOGICAL TRIAGE.

Balajee, Adayabalam S, Smith, Tammy, Ryan, Terri, Escalona, Maria, Dainiak, Nicholas

Use of ionizing radiation (IR) in various industrial, medical and other applications can potentially increase the risk of medical, occupational or accidental human exposure. Additionally, in the event of a radiological or nuclear (R/N) incident, several tens of hundreds and thousands of people are likely to be exposed to IR. IR causes serious health effects including mortality from acute radiation syndrome and therefore it is imperative to determine the absorbed radiation dose, which will enable physicians in making an appropriate clinical 'life-saving' decision. The 'Dicentric Chromosome Assay (DCA)' is the gold standard for estimating the absorbed radiation dose but its performance is time consuming and laborious. Further, timely evaluation of dicentric chromosomes (DCs) for dose estimation in a large number of samples provides a bottleneck because of a limited number of trained personnel and a prolonged time for manual analysis. To circumvent some of these technical issues, we developed and optimized a miniaturized high throughput version of DCA (mini-DCA) in a 96-microtube matrix with bar-coded 1.4 ml tubes to enable the processing of a large number of samples. To increase the speed of DC analysis for radiation dose estimation, a semi-automated scoring was optimized using the Metafer DCScore algorithm. The accuracy of mini-DCA in dose estimation was verified and validated though comparison with conventional DCA performed in 15 ml conical tubes. The mini-DCA considerably reduced the sample processing time by a factor of 4 when compared to the conventional DCA. Further, the radiation doses estimated by mini-DCA using the triage mode of scoring (50 cells or 30 DCs) were similar to that of conventional DCA using 300-500 cells. The mini-DCA coupled with semi-automated DC scoring not only reduced the sample processing and analysis times by a factor of 4 but also enabled the processing of a large number of samples at once. Our mini-DCA method, once automated for high throughput robotic platforms, will be an effective radiological triage tool for mass casualty incidents.

Digital object identifier (DOI): 10.1093/rpd/ncy127

Mutation research, 834, 35–41
October, 2018

Reprint of: A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

Shah, Ume-Kulsoom, Mallia, Jefferson de Oliveira, Singh, Neenu, Chapman, Katherine E, Doak, Shareen H, Jenkins, Gareth J S

<p>The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with &gt;75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[<em>a</em>]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.</p>

Digital object identifier (DOI): 10.1016/j.mrgentox.2018.06.020

The FEBS journal, 285, 3769–3785
October, 2018

Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells.

Muoio, Daniela, Berardinelli, Francesco, Leone, Stefano, Coluzzi, Elisa, di Masi, Alessandra, Doria, Filippo, Freccero, Mauro, Sgura, Antonella, Folini, Marco, Antoccia, Antonio

In the present paper, the biological effects of three different naphthalene diimides (NDIs) G-quadruplex (G4) ligands (H-NDI-Tyr, H-NDI-NMe2, and tetra-NDI-NMe2) were comparatively evaluated to those exerted by RHPS4, a well-characterized telomeric G4-ligand, in an in vitro model of glioblastoma. Data indicated that NDIs were very effective in blocking cell proliferation at nanomolar concentrations, although displaying a lower specificity for telomere targeting compared to RHPS4. In addition, differently from RHPS4, NDIs failed to enhance the effect of ionizing radiation, thus suggesting that additional targets other than telomeres could be involved in the strong NDI-mediated anti-proliferative effects. In order to test telomeric off-target action of NDIs, a panel of genes involved in tumor progression, DNA repair, telomere maintenance, and cell-cycle regulation were evaluated at transcriptional and translational level. Specifically, the compounds were able to cause a marked reduction of TERT and BCL2 amounts as well as to favor the accumulation of proteins involved in cell cycle control. A detailed cytofluorimetric analysis of cell cycle progression by means of bromodeoxyuridine (BrdU) incorporation and staining of phospho-histone H3 indicated that NDIs greatly reduce the progression through S-phase and lead to G1 accumulation of BrdU-positive cells. Taken together, these data indicated that, besides effects on telomeres and oncogenes such as Tert and Bcl2, nanomolar concentrations of NDIs determined a sustained block of cell proliferation by slowing down cell cycle progression during S-phase. In conclusion, our data indicate that NDIs G4-ligands are powerful antiproliferative agents, which act through mechanisms that ultimately lead to altered cell-cycle control.

Digital object identifier (DOI): 10.1111/febs.14628

Cancers, 10
October, 2018

Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies.

M'kacher, Radhia, Frenzel, Monika, Al Jawhari, Mustafa, Junker, Steffen, Cuceu, Corina, Morat, Luc, Bauchet, Anne-Laure, Stimmer, Lev, Lenain, Aude, Dechamps, Nathalie, Hempel, William M, Pottier, Geraldine, Heidingsfelder, Leonhard, Laplagne, Eric, Borie, Claire, Oudrhiri, Noufissa, Jouni, Dima, Bennaceur-Griscelli, Annelise, Colicchio, Bruno, Dieterlen, Alain, Girinsky, Theodore, Boisgard, Raphael, Bourhis, Jean, Bosq, Jacques, Mehrling, Thomas, Jeandidier, Eric, Carde, Patrice

<p>To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30-/CD15- cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (-/-)(NSG) mice. Using cell sorting, we demonstrate that CD30-/CD15- subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30-/CD15- cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Our HL animal model requires only 10³ cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30-/CD15- cells exhibiting high telomerase activity and telomere dysfunction.</p>

Digital object identifier (DOI): 10.3390/cancers10110414

Radiology, 288, 529--535
August, 2018

Abdominopelvic 1.5-T and 3.0-T MR Imaging in Healthy Volunteers: Relationship to Formation of DNA Double-Strand Breaks.

Suntharalingam, Saravanabavaan, Mladenov, Emil, Sarabhai, Theresia, Wetter, Axel, Kraff, Oliver, Quick, Harald H., Forsting, Michael, Iliakis, Georg, Nassenstein, Kai

Purpose To investigate the relationship between abdominopelvic magnetic resonance (MR) imaging and formation of DNA double-strand breaks (DSBs) in peripheral blood lymphocytes among a cohort of healthy volunteers. Materials and Methods Blood samples were obtained from 40 healthy volunteers (23 women and 17 men; mean age, 27.2 years [range, 21-37 years]) directly before and 5 and 30 minutes after abdominopelvic MR imaging performed at 1.5 T (n = 20) or 3.0 T (n = 20). The number of DNA DSBs in isolated blood lymphocytes was quantified after indirect immunofluorescent staining of a generally accepted DSB marker, γ-H2AX, by means of high-throughput automated microscopy. As a positive control of DSB induction, blood lymphocytes from six volunteers were irradiated in vitro with x-rays at a dose of 1 Gy (70-90 keV). Statistical analysis was performed by using a Friedman test. Results No significant alteration in the frequency of DNA DSB induction was observed after MR imaging (before imaging: 0.22 foci per cell, interquartile range [IQR] = 0.54 foci per cell; 5 minutes after MR imaging: 0.08 foci per cell, IQR = 0.39 foci per cell; 30 minutes after MR imaging: 0.09 foci per cell, IQR = 0.63 foci per cell; P = .057). In vitro radiation of lymphocytes with 1 Gy led to a significant increase in DSBs (0.22 vs 3.43 foci per cell; P = .0312). The frequency of DSBs did not differ between imaging at 1.5 T and at 3.0 T (5 minutes after MR imaging: 0.23 vs 0.06 foci per cell, respectively [P = .57]; 30 minutes after MR imaging: 0.12 vs 0.08 foci per cell [P = .76]). Conclusion Abdominopelvic MR imaging performed at 1.5 T or 3.0 T does not affect the formation of DNA DSBs in peripheral blood lymphocytes.

Digital object identifier (DOI): 10.1148/radiol.2018172453

Oncogenesis, 7, 62
August, 2018

Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects.

He, Qianqian, Au, Bijin, Kulkarni, Madhura, Shen, Yang, Lim, Kah J, Maimaiti, Jiamila, Wong, Cheng Kit, Luijten, Monique N H, Chong, Han C, Lim, Elaine H, Rancati, Giulia, Sinha, Indrajit, Fu, Zhiyan, Wang, Xiaomeng, Connolly, John E, Crasta, Karen C

Chromosomal instability (CIN), a high rate of chromosome loss or gain, is often associated with poor prognosis and drug resistance in cancers. Aneuploid, including near-polyploid, cells contain an abnormal number of chromosomes and exhibit CIN. The post-mitotic cell fates following generation of different degrees of chromosome mis-segregation and aneuploidy are unclear. Here we used aneuploidy inducers, nocodazole and reversine, to create different levels of aneuploidy. A higher extent of aneuploid and near-polyploid cells in a given population led to senescence. This was in contrast to cells with relatively lower levels of abnormal ploidy that continued to proliferate. Our findings revealed that senescence was accompanied by DNA damage and robust p53 activation. These senescent cells acquired the senescence-associated secretory phenotype (SASP). Depletion of p53 reduced the number of senescent cells with concomitant increase in cells undergoing DNA replication. Characterisation of these SASP factors demonstrated that they conferred paracrine pro-tumourigenic effects such as invasion, migration and angiogenesis both in vitro and in vivo. Finally, a correlation between increased aneuploidy and senescence was observed at the invasive front in breast carcinomas. Our findings demonstrate functional non-equivalence of discernable aneuploidies on tumourigenesis and suggest a cell non-autonomous mechanism by which aneuploidy-induced senescent cells and SASP can affect the tumour microenvironment to promote tumour progression.

Digital object identifier (DOI): 10.1038/s41389-018-0072-4

International journal of radiation biology, 94, 664–670
July, 2018

Evaluation of chromosomal aberrations induced by 188Re-dendrimer nanosystem on B16f1 melanoma cells.

Tassano, Marcos, Oddone, Natalia, Fernández, Marcelo, Porcal, Williams, García, MF, Martínez-López, Wilner, Benech, Juan Claudio, Cabral, Pablo

To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with ReO . Biodistribution was performed administrating Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of Re-dendrimer for 24 h. Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

Digital object identifier (DOI): 10.1080/09553002.2018.1478161