Scientific reports, 10, 2899
February, 2020

A High Throughput Approach to Reconstruct Partial-Body and Neutron Radiation Exposures on an Individual Basis.

Shuryak, Igor, Turner, Helen C., Perrier, Jay R., Cunha, Lydia, Canadell, Monica Pujol, Durrani, Mohammad H., Harken, Andrew, Bertucci, Antonella, Taveras, Maria, Garty, Guy, Brenner, David J.

<p>Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.</p>

Digital object identifier (DOI): 10.1038/s41598-020-59695-9

All Publications