Publications

Filter by Keyword

Filter by Application

Filter by Product/Solution


Hypertension research : official journal of the Japanese Society of Hypertension, 41, 426--434
2018

XRCC3 polymorphism is associated with hypertension-induced left ventricular hypertrophy.

Ariyandy, Andi, Sakai, Chiemi, Ishida, Mari, Mizuta, Ryusei, Miyagawa, Kiyoshi, Tashiro, Satoshi, Kinomura, Aiko, Hiraaki, Koji, Ueda, Keitaro, Yoshizumi, Masao, Ishida, Takafumi

<p>Deficiency of X-ray repair cross-complementing protein 3 (XRCC3), a DNA-damage repair molecule, and the 241Met variant of XRCC3 have been reported to increase endoreduplication, which induces polyploidy. The aims of this study were to determine the impact of the XRCC3 polymorphism on the incidence of hypertension-induced left ventricular hypertrophy (LVH) and to investigate the mechanisms underlying any potential relationship. Patients undergoing chronic hemodialysis (<em>n</em> = 77) were genotyped to assess for the XRCC3 Thr241Met polymorphism. The XRCC3 241Thr/Met genotype was more frequent in the LVH (+) group than in the LVH (-) group (42.3 vs. 13.7%, χ2 = 7.85, <em>p</em> = 0.0051). To investigate possible mechanisms underlying these observations, human XRCC3 cDNA of 241Thr or that of 241Met was introduced into cultured CHO cells. The surface area of CHO cells expressing XRCC3 241Met was larger than that expressing 241Thr. Spontaneous DNA double-strand breaks accumulated to a greater degree in NIH3T3 cells expressing 241Met (3T3-241Met) than in those expressing 241Thr (3T3-241Thr). DNA damage caused by radiation induced cell senescence more frequently in 3T3-241Met. The levels of basal and TNF-α-stimulated MCP-1 mRNA and protein secretion were higher in 3T3-241Met. Finally, FACS analysis revealed that the cell percentage in G2/M phase including polyploidy was significantly higher in 3T3-241Met than in 3T3-241Thr. Furthermore, the basal level of MCP-1 mRNA positively correlated with the cell percentage in G2/M phase and polyploidy. These data suggest that the XRCC3 241Met increases the risk of LVH via accumulation of DNA damage, thereby altering cell cycle progression and inducing cell senescence and a proinflammatory phenotype.</p>

Digital object identifier (DOI): 10.1038/s41440-018-0038-0

Evolution; international journal of organic evolution
2018

ZW, XY, and yet ZW: Sex chromosome evolution in snakes even more complicated.

Augstenová, Barbora, Johnson Pokorná, Martina, Altmanová, Marie, Frynta, Daniel, Rovatsos, Michail, Kratochvíl, Lukáš

Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in "basal" snakes such as pythons and boas, while heteromorphic and well differentiated in "advanced" (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non-caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.

Digital object identifier (DOI): 10.1111/evo.13543

Biological procedures online, 20, 13
2018

Optimization of Immunofluorescent Detection of Bone Marrow Disseminated Tumor Cells.

Axelrod, Haley D, Pienta, Kenneth J, Valkenburg, Kenneth C

Cancer metastasis is the primary cause of cancer-related deaths and remains incurable. Current clinical methods for predicting metastatic recurrence are not sensitive enough to detect individual cancer cells in the body; therefore, current efforts are directed toward liquid biopsy-based assays to capture circulating and disseminated tumor cells (CTCs and DTCs) in the blood and bone marrow, respectively. The most promising strategy is fluorescence-based immunostaining using cancer cell-specific markers. However, despite recent efforts to develop robust processing and staining platforms, results from these platforms have been discordant among groups, particularly for DTC detection. While the choice of cancer cell-specific markers is a large factor in this discordance, we have found that marker-independent factors causing false signal are just as critical to consider. Bone marrow is particularly challenging to analyze by immunostaining because endogenous immune cell properties and bone marrow matrix components typically generate false staining. For immunostaining of whole tumor tissue containing ample cancer cells, this background staining can be overcome. Application of fluorescent-based staining for rare cells, however, is easily jeopardized by immune cells and autofluorescence that lead to false signal. We have specifically found two types of background staining in bone marrow samples: autofluorescence of the tissue and non-specific binding of secondary antibodies. We systematically optimized a basic immunofluorescence protocol to eliminate this background using cancer cells spiked into human bone marrow. This enhanced the specificity of automated scanning detection software. Our optimized protocol also outperformed a commercial rare cell detection protocol in detecting candidate DTCs from metastatic patient bone marrow. Robust optimization to increase the signal-to-noise ratio of immunofluorescent staining of bone marrow is required in order to achieve the necessary sensitivity and specificity for rare cell detection. Background immunofluorescent staining in bone marrow causes uncertainty and inconsistency among investigators, which can be overcome by systematically addressing each contributing source. Our optimized assay eliminates sources of background signal, and is adaptable to automated staining platforms for high throughput analysis.

Digital object identifier (DOI): 10.1186/s12575-018-0078-5

British journal of cancer
2018

Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study.

Berbegall, Ana P, Bogen, Dominik, Pötschger, Ulrike, Beiske, Klaus, Bown, Nick, Combaret, Valérie, Defferrari, Raffaella, Jeison, Marta, Mazzocco, Katia, Varesio, Luigi, Vicha, Ales, Ash, Shifra, Castel, Victoria, Coze, Carole, Ladenstein, Ruth, Owens, Cormac, Papadakis, Vassilios, Ruud, Ellen, Amann, Gabriele, Sementa, Angela R, Navarro, Samuel, Ambros, Peter F, Noguera, Rosa, Ambros, Inge M

<p>In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues. The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH. Patients &lt;18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: &lt;18 m: 0.95 ± 0.04, &gt;18 m: 0.67 ± 0.14, <em>p</em> = 0.011; metastatic: &lt;18 m: 0.76 ± 0.15, &gt;18 m: 0.28 ± 0.09, <em>p</em> = 0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse. This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.</p>

Digital object identifier (DOI): 10.1038/s41416-018-0098-6

The American journal of surgical pathology, 42, 656--664
2018

Clarifying the Distinction Between Malignant Peripheral Nerve Sheath Tumor and Dedifferentiated Liposarcoma: A Critical Reappraisal of the Diagnostic Utility of MDM2 and H3K27me3 Status.

Makise, Naohiro, Sekimizu, Masaya, Kubo, Takashi, Wakai, Susumu, Hiraoka, Nobuyoshi, Komiyama, Motokiyo, Fukayama, Masashi, Kawai, Akira, Ichikawa, Hitoshi, Yoshida, Akihiko

Malignant peripheral nerve sheath tumor (MPNST) and dedifferentiated liposarcoma (DDLPS) are 2 major types of pleomorphic spindle cell sarcoma. The differentiation of MPNST and DDLPS by histomorphology alone can be problematic. Although MDM2 amplification and PRC2 alteration leading to H3K27me3 deficiency are genetic hallmarks of DDLPS and MPNST, respectively, a small number of MDM2-amplified MPNSTs and H3K27me3-deficient DDLPSs have been reported in the literature. We systematically compared MDM2 and H3K27me3 status in 68 MPNSTs and 47 DDLPSs. Of the 62 MPNSTs, 22 were immunopositive for MDM2, mostly in a weak and/or focal manner. Of the 21 MDM2-positive MPNSTs successfully tested by fluorescence in situ hybridization, high-level MDM2 amplification was observed in 1 case. In contrast, MDM2 staining and high-level MDM2 amplification were positive in all the DDLPS tested (28/28 and 20/20). Of the 68 MPNSTs, 42 cases (62%) exhibited complete loss of H3K27me3. All the 13 MPNSTs that showed heterologous differentiation were deficient in H3K27me3. Of the 47 DDLPSs, 3 cases (6%) had complete loss of H3K27me3, all of which exhibited heterologous differentiation. One case of H3K27me3-deficient DDLPS exhibited homozygous loss of EED according to targeted next-generation sequencing, whereas there were no alterations in NF1 and CDKN2A. In conclusion, high-level MDM2 amplification strongly suggests DDLPS over MPNST. Although a good marker for MPNST, H3K27me3 deficiency also uncommonly occurs in DDLPS in association with PRC2 mutational inactivation. Because both markers are imperfectly specific, rare sarcomas with dual features could be encountered, and their classification should integrate other parameters.

Digital object identifier (DOI): 10.1097/PAS.0000000000001014

Basic and clinical andrology, 28, 5
2018

Is sperm FISH analysis still useful for Robertsonian translocations? Meiotic analysis for 23 patients and review of the literature.

Lamotte, Anna, Martinez, Guillaume, Devillard, Françoise, Hograindleur, Jean-Pascal, Satre, Véronique, Coutton, Charles, Harbuz, Radu, Amblard, Florence, Lespinasse, James, Benchaib, Mehdi, Bessonnat, Julien, Brouillet, Sophie, Hennebicq, Sylviane

<p>Robertsonian translocations (RobT) are common structural chromosome rearrangements where carriers display a majority of chromosomally balanced spermatozoa from alternate segregation mode. According to some monotony observed in the rates of balanced segregation, is sperm FISH analysis obsolete for RobT carriers? Retrospective cohort research study on 23 patients analyzed in our center from 2003 to 2017 and compared to the data of 187 patients in literature from 1983 to 2017.Robertsonian translocation carriers were divided in six groups according to the chromosomes involved in the translocation: 9 patients from our center and 107 from literature carrying 45,XY,der(13;14) karyotype, 3 and 35 patients respectively with 45,XY,der(14;21), 5 and 11 patients respectively with 45,XY,der(13;15), 4 and 7 patients respectively with 45,XY,der(14;15), 1 and 4 patients respectively with 45,XY,der(13;22),and 1 and 10 patients respectively with 45,XY,der(14;22). Alternate segregation mode is predominant in our group of Robertsonian translocation carriers with 73.45% ± 8.05 of balanced spermatozoa (min 50.92%; max 89.99%). These results are compliant with the data from literature for all translocations types (<em>p</em> &gt; 0.05) and are consistent among the different types of Robertsonian translocations (<em>p</em> &gt; 0.05) except for der(13;15) that exhibit lower balanced spermatozoa rates (<em>p</em> &gt; 0.05 versus der(13;14), der(14;21), (13;21) and der(15;22)). Normozoospermic patients also display a significantly (<em>p</em> &lt; 0.01) higher rate of balanced sperm cells than patients with abnormal seminograms whatever the defect implied. According to the discrepancies observed between der(13;15) and all the other Rob T carriers, the differences observed among patients presenting normal and abnormal sperm parameters and the input in genetical counselling, sperm FISH does not seem obsolete for these patients. Moreover, it seems important to collect more data for rare RobT.</p>

Digital object identifier (DOI): 10.1186/s12610-018-0069-z

Environmental science and pollution research international
2018

Toxicological evaluation of nail polish waste discarded in the environment.

Felzenszwalb, Israel, Fernandes, Andreia da Silva, Brito, Lara Barroso, Oliveira, Gisele Augusto Rodrigues, Silva, Paula Aquino Soeiro, Arcanjo, Maria Elena, Marques, Monica Regina da Costa, Vicari, Taynah, Leme, Daniela Morais, Cestari, Marta Margarete, Ferraz, Elisa Raquel Anastacio

Nail polish has been widely used around the world. However, the hazards of nail polishes discarded in the environment are still poorly investigated. Thus, the toxicogenetic effects of solubilized (SE) and leached (LE) extracts from nail polishes were investigated, simulating their disposal on water and landfill, respectively, and identifying their physicochemical properties and chemical constituents. Organic compounds and metals were detected in both extracts. SE and LE only induced mutagenic effects in TA98 Salmonella strain in the presence and absence of exogenous metabolic activation. Although both extracts did not significantly increase the frequency of micronucleated HepG2 cells, the cell viability was affected by 24-h exposure. No DNA damage was observed in gonad fish cells (RTG-2) exposed to both extracts; however, the highest SE and LE concentrations induced significant lethal and sublethal effects on zebrafish early-life stages during 96-h exposure. Based on our findings, it can be concluded that if nail polishes enter aquatic systems, it may cause negative impacts to the environment.

Digital object identifier (DOI): 10.1007/s11356-018-1880-y

Mutation research, 826, 47--52
2018

Folate modulates guanine-quadruplex frequency and DNA damage in Werner syndrome.

Tavakoli Shirazi, Paniz, Leifert, Wayne Richard, Fenech, Michael Felix, François, Maxime

<p>Guanine-quadruplexes (G4) are stable tetra-stranded DNA structures that may cause DNA replication stress and inhibit gene expression. Defects in unwinding these structures by DNA helicases may result in telomere shortening and DNA damage. Furthermore, due to mutations in WRN helicase genes in Werner syndrome, G4 motifs are likely to be key elements in the expression of premature aging phenotypes. The methylation of DNA plays a significant role in the stability and occurrence of G4. Thus, G4 frequency and DNA methylation mechanisms may be affected by excesses or deficiencies in methyl donors such as folate. B-Lymphocytes from Werner patients (n=5) and healthy individuals (n=5) were cultured in RPMI medium under condition of folate deficiency (20 nM ) or sufficiency (200 nM) for 14 days. Cells were fixed on microscope slides for immunofluorescent staining to measure G4 frequency and γH2AX (a marker of DNA strand breaks) intensity, using automated quantitative imaging fluorescent microscopy.</p>

Digital object identifier (DOI): 10.1016/j.mrgentox.2017.12.002

Surgical oncology, 27, 106--113
2018

Detection of RET (rearranged during transfection) variants and their downstream signal molecules in RET rearranged lung adenocarcinoma patients.

Kim, Jeong-Oh, Shin, Jung-Young, Kim, Min Young, Son, Kyoung Hwa, Jung, Chan Kwon, Kim, Tae-Jung, Kim, Su Young, Park, Jae Kil, Sung, Sook Whan, Bae, Sang Ju, Min, Hyun Jung, Kang, Jin-Hyoung

We screened resected tumor tissues from patients with lung cancer for EGFR mutations, ALK rearrangements, and rearranged during transfection (RET) gene variants (including RET rearrangements and the Kinesin Family Member 5B (KIF5B)-RET fusion gene) using various methods including reverse transcription polymerase chain reaction (RT-PCR), transcript assays, fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). We also examined the protein expression of associated downstream signaling molecules to assess the effect of these variants on patient outcome. We constructed a tissue microarray (TMA) comprising 581 resected tumor tissues from patients with lung adenocarcinoma and analyzed the microarray by both FISH (using RET break-apart and KIF5B-RET SY translocation probes) and a commercial RET transcript assay. We evaluated the expression of RET and RET-related signaling molecules, including p-AKT and p-ERK, by TMA -based IHC staining. Among the 581 specimens, 51 (8.8%) specimens harbored RET rearrangements, including 12 cases (2.1%) carrying a KIF5B-RET fusion gene. Surprisingly, RET expression was lower in KIF5B-RET fusion gene-positive than in RET wild-type specimens. We detected activating EGFR mutations in 11 (21.6%) of the 51 RET variant-positive specimens. Among the KIF5B-RET fusion gene-positive specimens, p-ERK expression was significantly lower in the EGFR mutation subgroup showing RET expression than in the EGFR mutation subgroup that did not express RET. Similarly, the RET rearrangement group showed significant variation in the expression level of p-AKT (P?=?0.028) and p-ERK, whose expression remarkably increased in specimens not expressing RET. The expression of p-ERK markedly increased in the RET rearrangement group regardless of RET expression. This result suggests that a combination of RET and ERK inhibitors may be an effective treatment strategy for lung adenocarcinoma patients harboring RET variants.

Digital object identifier (DOI): 10.1016/j.suronc.2018.01.006

Revista brasileira de ortopedia, 53, 293–299
2018

Intra-articular viscosupplementation of hyaluronic acids in an experimental osteoarthritis model.

Oliveira, Marcello Zaia, Albano, Mauro Batista, Stirma, Guilherme Augusto, Namba, Mario Massatomo, Vidigal, Leandro, Cunha, Luiz Antonio Munhoz da

To analyze, from the immunohistochemical perspective, the effects of hyaluronic acid of different molecular weights in an experimental model of osteoarthritis in rabbits. Forty-four male California rabbits were randomly assigned to three different groups (PR, S, and P) and submitted to the resection of the anterior cruciate ligament of the right knee. Three weeks after the surgical procedure, three intra-articular weekly injections were carried out with low-molecular-weight native hyaluronic acid (Hyalgan ) to PR group, high molecular weight branched chain hyaluronic acid (Synvisc ) to group S, and saline solution 0.9% to group P. All animals were sacrificed 12 weeks after the surgical procedure, and the tibial plateaus of the infiltrated knees were then dissected. Histological sections of cartilage from the tibial plateau support areas were stained with immunohistochemical markers in order to investigate the amount of metalloproteases (MMPs 3 and 13) and their inhibitors (TIMPs 1 and 3). The staining intensity was quantified on a Zeiss Imager.Z2 Metasystems microscope and analyzed by Metafer4 Msearch software. The chondroprotective effect of the hyaluronic acids used in the study was demonstrated when compared to the control group. However, the comparison between them presented no significant statistical difference regarding chondroprotection. The injection of saline solution demonstrated signs of OA development, while adding native hyaluronic acid of low molecular weight (Hyalgan ) and hyaluronic acid of high molecular weight (Synvisc ) protected the articular cartilage in this model of OA.

Digital object identifier (DOI): 10.1016/j.rboe.2018.03.009

Scientific Reports, 8(1), 1141
2018

First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness

Cirrone, GAP, Manti, L, Margarone, D, Petringa, G, Giuffrida, L, Minopoli, A, Picciotto, A, Russo, G, Cammarata, F, Pisciotta, P, others

Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.

Diagnostics (Basel, Switzerland), 8
2018

Aneuploid CTC and CEC.

Lin, Peter Ping

<p>Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (&gt; white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (<em>CDKN2A</em>) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.</p>

Digital object identifier (DOI): 10.3390/diagnostics8020026

Journal of clinical pathology
2018

KRAS fluorescence in situ hybridisation testing for the detection and diagnosis of pancreatic adenocarcinoma.

Shiroma, Noriyuki, Arihiro, Koji, Oda, Miyo, Orita, Makoto

The aim of our study was to analyse correlations between mutation status, chromosomal changes that affect status in cells from pancreatic tumours. We collected 69 cases of surgically resected pancreatic ductal adenocarcinoma (PDA) and seven cases of chronic pancreatitis (CP). Chromosomal abnormalities of and CEP12 were detected using fluorescence in situ hybridisation (FISH). The number of CEP12 signals per cell ranged from 1.78 to 2.04 and 1.46 to 4.88 in CP and PDA samples, respectively, while the number of signals per cell ranged from 1.94 to 2.06 and 1.88 to 8.18 in CP and PDA samples, respectively. The 'chromosomal instability index', which was defined as the percentage of cells with any chromosomal abnormality, was over 5.7 times greater in PDA than in CP. We performed mutation analysis by direct sequencing and found that tumours with mutations have a significantly higher mean signal per cell from PDA samples compared with tumours with wild-type amplification was noted in 10% of cases. Although we found that lymph node metastasis and distal metastasis of PDA were more frequent in cases with amplification, this was not correlated with overall survival. Using a threshold of 40%, we found that the chromosomal instability index robustly discriminated PDA cells from CP cells. Based on these findings, we concluded that FISH testing of using cytology samples may represent an accurate approach for the diagnosis of PDA.

Digital object identifier (DOI): 10.1136/jclinpath-2018-205002

Journal of medical entomology, 55, 575--586
2018

Description of Larval Instars To Fill a Gap in Forensic Entomology: The Larvae of Paralucilia pseudolyrcea (Diptera: Calliphoridae).

Da Silva, S M, Vairo, K P, Moura, M O

A fundamental assumption of forensic entomology for estimating the postmortem interval is that insect species are accurately identified, which depends on diagnostic morphological characters. Larvae of the blow fly Paralucilia pseudolyrcea (Mello, 1969) (Diptera: Calliphoridae) were sampled from four corpses in the state of Paraná, Brazil, but despite the forensic importance of this species, morphological data for the identification of its larval instars are lacking, limiting its usefulness in such cases. Thus, the main goal of this study was to describe the larval instars of P. pseudolyrcea. The material was obtained from a colony established by larvae collected from a corpse of a murder case. Overall, the distribution of spines is a key character for identifying this species in the first, second and third instars. Other characteristics, such as the presence of an accessory oral sclerite, the small cirri, the number of lobes of the anterior spiracle and the morphology of posterior spiracles, separates P. pseudolyrcea from other necrophagous blow flies. The detailed morphological description provided here facilitates the identification of larval instars of P. pseudolyrcea and their differentiation from those of other calliphorid species.

Digital object identifier (DOI): 10.1093/jme/tjx257

Molecular cytogenetics, 11, 4
2018

Is cancer progression caused by gradual or simultaneous acquisitions of new chromosomes?

Bloomfield, Mathew, Duesberg, Peter

Foulds defined, "Tumor progression (as a) permanent, irreversible qualitative change in one or more of its characters" (Cancer Res. 1954). Accordingly progressions, such as metastases and acquired drug-resistance, were since found to be subspecies of cancers with conserved and numerous new chromosomes. Here we ask whether cancers acquire numerous new chromosomes gradually or simultaneously in progressions. The currently prevailing theory of Nowell (Science, 1976) holds that unexplained "genetic instability" generates "variant sublines (with) changes in chromosome number" and that "clonal" progressions arise by "stepwise selection of more aggressive sublines". The literature, however, contains many examples of "immediate" selections of progressions with numerous new chromosomes - notably experimentally initiated fusions between cancers and heterologous cells. Furthermore, the stepwise progression theory predicts intermediate sublines of cancers with multiple non-clonal additions of new chromosomes. However, the literature does not describe such intermediates. In view of these inconsistencies with stepwise progression we test here a saltational theory, in which the inherent variability of cancer-specific aneuploidy generates "immediate" progressions with individual clonal karyotypes, transcriptomes and phenotypes in single steps. Using cell fusion as an established controllable model of "immediate" progression, we generated seven immortal murine hybridomas by fusing immortal murine myeloma cells and normal antibody-producing B-cells with polyethylene glycol within a few minutes. These immortal hybridomas contained individual sets of 71 to 105 clonal chromosomes, compared to the 52 chromosomes of the parental myeloma. Thus the myeloma had gained 19 to 53 new clonal chromosomes in seven individual hybridomas in a single step. Furthermore, no stable intermediates were found, as would be predicted by a saltational process. We conclude that random fusions between myelomas and normal B-cells generate clonal hybridomas with multiple, individual chromosomes in single steps. Similar single-step mechanisms may also generate the "late" clonal progressions of cancers with gains of numerous new chromosomes and thus explain the absence of intermediates. Latency would reflect the low probability of rare stochastic progressions. In conclusion, the karyotypic clonality of hybridomas and spontaneous progressions suggests karyotypic alterations as proximate causes of neoplastic progressions. Since cancer-specific aneuploidy catalyzes karyotypic variation, the degree of aneuploidy predicts the clinical risk of neoplastic progression onfirming classical predictions based on DNA content

Digital object identifier (DOI): 10.1186/s13039-017-0350-4

Cancer letters, 412, 99--107
2018

Quantified postsurgical small cell size CTCs and EpCAM+ circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse.

Wang, Liang, Li, Yilin, Xu, Jing, Zhang, Aiqun, Wang, Xuedong, Tang, Rui, Zhang, Xinjing, Yin, Hongfang, Liu, Manting, Wang, Daisy Dandan, Lin, Peter Ping, Shen, Lin, Dong, Jiahong

<p>Detection of hepatocellular carcinoma circulating tumor cells performed with conventional strategies, is significantly limited due to inherently heterogeneous and dynamic expression of EpCAM, as well as degradation of cytokeratins during epithelial-to-mesenchymal transition, which inevitably lead to non-negligible false negative detection of such "uncapturable and invisible" CTCs. A novel SE-iFISH strategy, improved for detection of HCC CTCs in this study, was applied to comprehensively detect, in situ phenotypically and karyotypically characterize hepatocellular and cholangiocarcinoma CTCs (CD45 /CD31 ) in patients subjected to surgical resection. Clinical significance of diverse subtypes of CTC was systematically investigated. Existence of small cell size CTCs (≤5 μm of WBCs) with cytogenetic abnormality of aneuploid chromosome 8, which constituted majority of the detected CTCs in HCC patients, was demonstrated for the first time. The stemness marker EpCAM aneuploid circulating tumor stem cells (CTSCs), and EpCAM small CTCs with trisomy 8, promote tumor growth. Postsurgical quantity of small triploid CTCs (≥5 cells/6 ml blood), multiploid (≥pentasomy 8) CTSCs or CTM (either one ≥ 1) significantly correlated to HCC patients' poor prognosis, indicating that detection of those specific subtypes of CTCs and CTSCs in post-operative patients help predict neoplasm recurrence.</p>

Digital object identifier (DOI): 10.1016/j.canlet.2017.10.004

Journal of phycology
2018

Quantitative comparison of taxa and taxon concepts in the diatom genus Fragilariopsis: a case study on using slide scanning, multi-expert image annotation and image analysis in taxonomy.

Beszteri, Bánk, Allen, Claire, Almandoz, Gastón O, Armand, Leanne, Barcena, María Ángeles, Cantzler, Hannelore, Crosta, Xavier, Esper, Oliver, Jordan, Richard W, Kauer, Gerhard, Klaas, Christine, Kloster, Michael, Leventer, Amy, Pike, Jennifer, Rigual Hernández, Andrés S

Semi-automated methods for microscopic image acquisition, image analysis and taxonomic identification have repeatedly received attention in diatom analysis. Less well studied is the question whether and how such methods might prove useful for clarifying the delimitation of species that are difficult to separate for human taxonomists. To try to answer this question, three very similar Fragilariopsis species endemic to the Southern Ocean were targeted in this study: F. obliquecostata, F. ritscheri, and F. sublinearis. A set of 501 extended focus depth specimen images were obtained using a standardized, semi-automated microscopic procedure. Twelve diatomists independently identified these specimen images in order to reconcile taxonomic opinions and agree upon a taxonomic gold standard. Using image analyses, we then extracted morphometric features representing taxonomic characters of the target taxa. The discriminating ability of individual morphometric features was tested visually and statistically, and multivariate classification experiments were performed to test the agreement of the quantitatively-defined taxa assignments with expert consensus opinion. Beyond an updated differential diagnosis of the studied taxa, our study also shows that automated imaging and image analysis procedures for diatoms are coming close to reaching a broad applicability for routine use. This article is protected by copyright. All rights reserved.

Digital object identifier (DOI): 10.1111/jpy.12767

Radiology, 288, 529--535
2018

Abdominopelvic 1.5-T and 3.0-T MR Imaging in Healthy Volunteers: Relationship to Formation of DNA Double-Strand Breaks.

Suntharalingam, Saravanabavaan, Mladenov, Emil, Sarabhai, Theresia, Wetter, Axel, Kraff, Oliver, Quick, Harald H, Forsting, Michael, Iliakis, Georg, Nassenstein, Kai

<p>Purpose To investigate the relationship between abdominopelvic magnetic resonance (MR) imaging and formation of DNA double-strand breaks (DSBs) in peripheral blood lymphocytes among a cohort of healthy volunteers. Materials and Methods Blood samples were obtained from 40 healthy volunteers (23 women and 17 men; mean age, 27.2 years [range, 21-37 years]) directly before and 5 and 30 minutes after abdominopelvic MR imaging performed at 1.5 T (n = 20) or 3.0 T (n = 20). The number of DNA DSBs in isolated blood lymphocytes was quantified after indirect immunofluorescent staining of a generally accepted DSB marker, γ-H2AX, by means of high-throughput automated microscopy. As a positive control of DSB induction, blood lymphocytes from six volunteers were irradiated in vitro with x-rays at a dose of 1 Gy (70-90 keV). Statistical analysis was performed by using a Friedman test. Results No significant alteration in the frequency of DNA DSB induction was observed after MR imaging (before imaging: 0.22 foci per cell, interquartile range [IQR] = 0.54 foci per cell; 5 minutes after MR imaging: 0.08 foci per cell, IQR = 0.39 foci per cell; 30 minutes after MR imaging: 0.09 foci per cell, IQR = 0.63 foci per cell; P = .057). In vitro radiation of lymphocytes with 1 Gy led to a significant increase in DSBs (0.22 vs 3.43 foci per cell; P = .0312). The frequency of DSBs did not differ between imaging at 1.5 T and at 3.0 T (5 minutes after MR imaging: 0.23 vs 0.06 foci per cell, respectively [P = .57]; 30 minutes after MR imaging: 0.12 vs 0.08 foci per cell [P = .76]). Conclusion Abdominopelvic MR imaging performed at 1.5 T or 3.0 T does not affect the formation of DNA DSBs in peripheral blood lymphocytes.</p>

Digital object identifier (DOI): 10.1148/radiol.2018172453

Journal of Alzheimer's disease : JAD, 61, 899–905
2018

A Novel Antibody Targeting Tau Phosphorylated at Serine 235 Detects Neurofibrillary Tangles.

Brici, David, Götz, Jürgen, Nisbet, Rebecca M

<p>Alzheimer's disease is characterized by two main pathological hallmarks in the human brain: the extracellular deposition of amyloid-β as plaques and the intracellular accumulation of the hyperphosphorylated protein tau as neurofibrillary tangles (NFTs). Phosphorylated tau (p-tau) specific-antibodies and silver staining have been used to reveal three morphological stages of NFT formation: pre-NFTs, intraneuronal NFTs (iNFTs), and extraneuronal NFTs (eNFTs). Here we characterize a novel monoclonal antibody, RN235, which is specific for tau phosphorylated at serine 235, and detects iNFTs and eNFTs in brain tissue, suggesting that phosphorylation at this site is indicative of late stage changes in tau.</p>

Digital object identifier (DOI): 10.3233/JAD-170610

Pathology, research and practice, 214, 318--324
2018

Osteosarcoma arising in fibrous dysplasia, confirmed by mutational analysis of GNAS gene.

Sugiura, Yoshiya, Kanda, Hiroaki, Motoi, Noriko, Nomura, Kimie, Inamura, Kentaro, Okada, Erina, Matsumoto, Haruna, Shimoji, Takashi, Matsumoto, Seiichi, Nakayama, Jun, Takazawa, Yutaka, Ishikawa, Yuichi, Machinami, Rikuo

Malignancy arising in fibrous dysplasia (FD) is rare. Approximately 100 cases have been reported so far, and osteosarcoma is the most common malignancy. We report a case of osteosarcoma in a 33-year-old Japanese man with monostotic FD of the right proximal femur from the age of 16 years. Histologically, relatively well-differentiated osteosarcoma was found in the FD lesion. Immunohistochemically, the FD was negative for p53 or MDM2, and the MIB-1 index was less than 1%, whereas the osteosarcoma was positive for both p53 and MDM2, and the MIB-1 index was up to 15%. The FD and osteosarcoma were negative for CDK4. Fluorescent in situ hybridization assay showed no amplification of the MDM2 gene, indicating that the osteosarcoma was a conventional osteosarcoma, not an intraosseous well-differentiated type. The original cell of malignancy in FD is unclear. Malignancy can be potentially derived from dysplastic cells in the area of the FD or cells in the adjacent normal tissues. GNAS gene mutation has recently been reported for fibrous dysplasia and the mutation is highly specific to fibrous dysplasia among fibro-osseous lesions including osteosarcoma. In this case, point mutations of GNAS were found in the FD and osteosarcoma but not in the adjacent normal tissues, suggesting that osteosarcoma was derived from the spindle cells of FD. This is the first report to clearly show that osteosarcoma is derived from the spindle cells in fibrous dysplasia (FD).

Digital object identifier (DOI): 10.1016/j.prp.2017.10.018