Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution


Environmental science and pollution research international, 30, 35258--35268
March, 2023

Exudation of microplastics from commonly used face masks in COVID-19 pandemic.

Bhangare, Rahul C., Tiwari, Mahesh, Ajmal, Puthiyaveettilparambu Yousuf, Rathod, Tejas D., Sahu, Sanjay K.

<p>The COVID-19 pandemic forced use of face masks up to billions of masks per day globally. Though an important and necessary measure for control of the pandemic, use of masks also poses some inherent risks. One of those risks is inhalation of microplastics released from the mask materials. Since most of the mask materials are made from plastic/polymers, they always have the potential to expose the user to fragmented microplastics. To estimate the amount of inhalable microplastic exuded from masks, an experiment simulating real-life scenario of mask usage was performed. The study included collection of microplastics oozed out from the masks on to a filter paper followed by staining and fluorescence detection of the total number of microplastics using a microscope. Both used and new masks were studied. Based on the emission wavelength, the microplastics were found to be belonging to three different categories, namely blue, green and red emitting microplastics respectively. The number of microplastic particles emitted per mask over a period of usage of 8 h was about 5000 to 9000 for new masks and about 6500 to 15,000 for used masks respectively. The estimation of polymer type of plastic in the mask fabrics was also carried out using Raman and FTIR spectroscopy.</p>

Digital object identifier (DOI): 10.1007/s11356-022-24702-1

International journal of molecular sciences, 24
March, 2023

High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview.

M'Kacher, Radhia, Colicchio, Bruno, Junker, Steffen, El Maalouf, Elie, Heidingsfelder, Leonhard, Plesch, Andreas, Dieterlen, Alain, Jeandidier, Eric, Carde, Patrice, Voisin, Philippe

<p>In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.</p>

Digital object identifier (DOI): 10.3390/ijms24065699

Radiation research
September, 2021

CytoRADx: A High-Throughput, Standardized Biodosimetry Diagnostic System Based on the Cytokinesis-Block Micronucleus Assay.

Capaccio, Chris, Perrier, Jay R., Cunha, Lídia, Mahnke, Ryan C., Lörch, Thomas, Porter, Michael, Smith, Chris L., Damer, Ken, Bourland, J. Daniel, Frizzell, Bart, Torelli, Jennifer, Vasquez, Marie, Brower, Jeremy B., Doyle-Eisele, Melanie, Taveras, Maria, Turner, Helen, Brenner, David J., Kowalski, Richard

<p>In a large-scale catastrophe, such as a nuclear detonation in a major city, it will be crucial to accurately diagnose large numbers of people to direct scarce medical resources to those in greatest need. Currently no FDA-cleared tests are available to diagnose radiation exposures, which can lead to complex, life-threatening injuries. To address this gap, we have achieved substantial advancements in radiation biodosimetry through refinement and adaptation of the cytokinesis-block micronucleus (CBMN) assay as a high throughput, quantitative diagnostic test. The classical CBMN approach, which quantifies micronuclei (MN) resulting from DNA damage, suffers from considerable time and expert labor requirements, in addition to a lack of universal methodology across laboratories. We have developed the CytoRADx™ System to address these drawbacks by implementing a standardized reagent kit, optimized assay protocol, fully automated microscopy and image analysis, and integrated dose prediction. These enhancements allow the CytoRADx System to obtain high-throughput, standardized results without specialized labor or laboratory-specific calibration curves. The CytoRADx System has been optimized for use with both humans and non-human primates (NHP) to quantify radiation dose-dependent formation of micronuclei in lymphocytes, observed using whole blood samples. Cell nuclei and resulting MN are fluorescently stained and preserved on durable microscope slides using materials provided in the kit. Up to 1,000 slides per day are subsequently scanned using the commercially based RADxScan™ Imager with customized software, which automatically quantifies the cellular features and calculates the radiation dose. Using less than 1 mL of blood, irradiated ex vivo, our system has demonstrated accurate and precise measurement of exposures from 0 to 8 Gy (90% of results within 1 Gy of delivered dose). These results were obtained from 636 human samples (24 distinct donors) and 445 NHP samples (30 distinct subjects). The system demonstrated comparable results during in vivo studies, including an investigation of 43 NHPs receiving single-dose total-body irradiation. System performance is repeatable across laboratories, operators, and instruments. Results are also statistically similar across diverse populations, considering various demographics, common medications, medical conditions, and acute injuries associated with radiological disasters. Dose calculations are stable over time as well, providing reproducible results for at least 28 days postirradiation, and for blood specimens collected and stored at room temperature for at least 72 h. The CytoRADx System provides significant advancements in the field of biodosimetry that will enable accurate diagnoses across diverse populations in large-scale emergency scenarios. In addition, our technological enhancements to the well-established CBMN assay provide a pathway for future diagnostic applications, such as toxicology and oncology.</p>

Digital object identifier (DOI): 10.1667/RADE-20-00030.1

Frontiers in oncology, 11, 682647
2021

The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives.

Bláha, Pavel, Feoli, Chiara, Agosteo, Stefano, Calvaruso, Marco, Cammarata, Francesco Paolo, Catalano, Roberto, Ciocca, Mario, Cirrone, Giuseppe Antonio Pablo, Conte, Valeria, Cuttone, Giacomo, Facoetti, Angelica, Forte, Giusi Irma, Giuffrida, Lorenzo, Magro, Giuseppe, Margarone, Daniele, Minafra, Luigi, Petringa, Giada, Pucci, Gaia, Ricciardi, Valerio, Rosa, Enrico, Russo, Giorgio, Manti, Lorenzo

<p>Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and B atoms, i.e. p+ B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.</p>

Digital object identifier (DOI): 10.3389/fonc.2021.682647

Journal of personalized medicine, 10
October, 2020

Radiation Biomarkers in Large Scale Human Health Effects Studies.

Moquet, Jayne, Rothkamm, Kai, Barnard, Stephen, Ainsbury, Elizabeth

Following recent developments, the RENEB network (Running the European Network of biological dosimetry and physical retrospective dosimetry) is in an excellent position to carry out large scale molecular epidemiological studies of ionizing radiation effects, with validated expertise in the dicentric, fluorescent hybridization (FISH)-translocation, micronucleus, premature chromosome condensation, gamma-H2AX foci and gene expression assays. Large scale human health effects studies present complex challenges such as the practical aspects of sample logistics, assay costs, effort, effect modifiers and quality control/assurance measures. At Public Health England, the dicentric, automated micronucleus and gamma-H2AX radiation-induced foci assays have been tested for use in a large health effects study. The results of the study and the experience gained in carrying out such a large scale investigation provide valuable information that could help minimise random and systematic errors in biomarker data sets for health surveillance analyses going forward.

Digital object identifier (DOI): 10.3390/jpm10040155

International journal of radiation biology, 96, 1263--1273
October, 2020

Comparison of inexperienced operators and experts in γH2A.X and 53BP1 foci assay for high-throughput biodosimetry approaches in a mass casualty incident.

Bucher, Martin, Duchrow, Lukas, Endesfelder, David, Roessler, Ute, Gomolka, Maria

<p>In case of population exposure by ionizing radiation, a fast and reliable dose assessment of exposed and non-exposed individuals is crucial important. In initial triage, physicians have to take fast decisions whom to treat with adequate medical care. In addition, worries about significant exposure can be taken away from hundreds to thousands non- or low exposed individuals. Studies have shown that the γH2A.X radiation-induced foci assay is a promising test for fast triage decisions. However, in a large-scale scenario most biodosimetry laboratories will quickly reach their capacity limit. The aim of this study was to evaluate the benefit of inexperienced experimenters to speed up the foci assay and manual foci scoring. The participants of two training courses performed the radiation-induced foci assay (γH2A.X) under the guidance of experts and scored foci (γH2A.X and 53BP1) on sham-irradiated and irradiated blood samples (0.05-1.5 Gy). The outcome of laboratory experiments and manual foci scoring by 26 operators with basic experience in laboratory work was statistically analyzed in comparison to the results from experts. Inexperienced operators prepared slides with significant dose-effects (0, 0.1 and 1.0 Gy) for semi-automatic microscopic analyses. Manual foci scoring by inexperienced scorer resulted in a dose-effect curve for γH2A.X, 53BP1 and co-localized foci. In addition, inexperienced scorers were able to distinguish low irradiation doses from unirradiated cells. While 53BP1 foci scoring was in accordance to the expert counting, differences between beginners and expert increased for γH2A.X or co-localized foci. In case of a large-scale radiation event, inexperienced staff is useful to support laboratories in slide preparation for semi-automatic foci counting as well as γH2A.X and 53BP1 manual foci scoring for triage-mode biodosimetry. Slides can be clearly classified in the non-, low- or high-exposed category.</p>

Digital object identifier (DOI): 10.1080/09553002.2020.1793024

Toxicology in vitro : an international journal published in association with BIBRA, 66, 104866
August, 2020

A comparative in vitro toxicity assessment of electronic vaping product e-liquids and aerosols with tobacco cigarette smoke.

Wieczorek, R., Phillips, G., Czekala, L., Trelles Sticken, E., O'Connell, G., Simms, L., Rudd, K., Stevenson, M., Walele, T.

The use of electronic vaping products (EVPs) continues to increase worldwide among adult smokers in parallel with accumulating information on their potential toxicity and relative safety compared to tobacco smoke. At this time, in vitro assessments of many widely available EVPs are limited. In this study, an in vitro battery of established assays was used to examine the cytotoxic (Neutral red uptake), genotoxic (In vitro micronucleus) and mutagenic (Bacterial reverse mutation) responses of two commercial EVPs (blu GO™ disposable and blu PLUS+™ rechargeable) when compared to smoke from a reference cigarette (3R4F). In total, 12 commercial products were tested as e-liquids and as aerosols. In addition, two experimental base liquids containing 1.2% and 2.4% nicotine were also assessed to determine the effect of flavour and nicotine on all three assays. In the bacterial reverse mutation (Ames) and in vitro micronucleus (IVM) assays, exposures to e-liquids and EVP aerosols, with and without nicotine and in a range of flavourings, showed no mutagenic or genotoxic effects compared to tobacco smoke. The neutral red uptake (NRU) assay showed significantly reduced cytotoxicity (P < .05) for whole undiluted EVP aerosols compared to tobacco smoke, which by contrast was markedly cytotoxic even when diluted. The reduced in vitro toxicological responses of the EVPs add to the increasing body of scientific weight-of-evidence supporting the role of high-quality EVPs as a harm reduction tool for adult smokers.

Digital object identifier (DOI): 10.1016/j.tiv.2020.104866

Health physics, 119, 52--58
July, 2020

Automated Dicentric Aberration Scoring for Triage Dose Assessment: 60Co Gamma Ray Dose-response at Different Dose Rates.

Subramanian, Uma, O'Brien, Brett, McNamara, Maureen, Romanyukha, Lyudmila, Bolduc, David L., Olsen, Cara, Blakely, William F.

<p>The objective of this study was to establish radiation dose-response calibration curves using automated dicentric scoring to support rapid and accurate cytogenetic triage dose-assessment. Blood was drawn from healthy human volunteers and exposed to Co gamma rays at several dose rates (i.e., 1.0, 0.6, and 0.1 Gy min). After radiation, the blood was placed for 2 h in a 37 °C incubator for repair. Blood was then cultured in complete media to which a mitogen (i.e., phytoghemagglutinin, concentration 4%) was added for 48 h. Colcemid was added to the culture at a final concentration of 0.2 μg mL after 24 h for the purpose of arresting first-division metaphase mitotics. Cells were harvested at the end of 48 h. Samples were processed using an automated metaphase harvester and automated microscope metaphase finder equipped with a suite of software including a specialized automated dicentric scoring application. The data obtained were used to create dose-response tables of dicentric yields. The null hypothesis that the data is Poisson-distributed could not be rejected at the significance level of α = 0.05 using results from a Shiny R Studio application (goodness-of-fit Poisson). Calibration curves based on linear-quadratic fits for Co gamma rays at the three different dose rates were generated using these data. The calibration curves were used to detect blind test cases. In conclusion, using the automated harvester and automated microscope metaphase finder with associated automated dicentric scoring software demonstrates high-throughput with suitable accuracy for triage radiation dose assessment.</p>

Digital object identifier (DOI): 10.1097/HP.0000000000001285

International journal of radiation biology, 96, 214--219
February, 2020

An alternative approach for the induction of premature chromosome condensation in human peripheral blood lymphocytes using mitotic Akodon cells.

Selvan Gnana Sekaran, Tamizh, Ricoul, Michelle, Brochard, Patricia, Herate, Cecile, Sabatier, Laure

The premature chromosome condensation (PCC) technique is used to study exposure to external radiation through the determination of chromosome fragments observed in interphase cells. The presence of large telomeric signals in CHO cells interferes with the detection of PCC fragments and the identification of dicentric chromosomes. We present an improved method for the fusion of G0-lymphocytes with mitotic cells (few chromosomes and weakly-staining telomeric sequences) to induce PCC in combination with rapid quantification of dicentric chromosomes and centric rings as an alternative to the classical CHO cell fusion technique. Whole blood from three healthy volunteers was γ-irradiated with 0, 2, or 4 Gy. Following a 24 h incubation post-exposure at 37 °C, chromosome spreads of isolated lymphocytes were prepared by standard PCC procedures using mitotic cells. The percentage of scorable fusions, measured by telomere/centromere (T/C) staining, for -induced PCC was higher than that for CHO-induced PCC, irrespective of radiation exposure. Importantly, both techniques gave the same result for biodosimetry evaluation. The mitotic cell-induced PCC fusion assay, in combination with the scoring of dicentric chromosomes and rings by T/C staining of G0-lymphocytes is a suitable alternative for fast and reliable dose estimation after accidental radiation exposure.

Digital object identifier (DOI): 10.1080/09553002.2019.1625493

Scientific reports, 10, 2899
February, 2020

A High Throughput Approach to Reconstruct Partial-Body and Neutron Radiation Exposures on an Individual Basis.

Shuryak, Igor, Turner, Helen C., Perrier, Jay R., Cunha, Lydia, Canadell, Monica Pujol, Durrani, Mohammad H., Harken, Andrew, Bertucci, Antonella, Taveras, Maria, Garty, Guy, Brenner, David J.

Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.

Digital object identifier (DOI): 10.1038/s41598-020-59695-9

International journal of molecular sciences, 21
February, 2020

Micronucleus Assay: The State of Art, and Future Directions.

Sommer, Sylwester, Buraczewska, Iwona, Kruszewski, Marcin

During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.

Digital object identifier (DOI): 10.3390/ijms21041534

Mutation research, 849, 503086
January, 2020

Analysis of historical negative control group data from the rat in vivo micronucleus assay.

Lovell, D. P., Fellows, M., Saul, J., Whitwell, J., Custer, L., Dertinger, S., Escobar, P., Fiedler, R., Hemmann, U., Kenny, J., Smith, R., van der Leede, B. M., Zeller, A.

A database of micronuclei counts for historical negative control data from rat in vivo micronuclei tests performed in 10 different laboratories was established. Data were available from over 4000 negative control rats from 10 laboratories. The mean frequency of micronucleated cells (MN)/1000 cells ranged from 0.44 to 2.22, a 5-fold range. Overall there were no major sex or strain differences in frequency, although there were some small but statistically significant differences within laboratories. There was appreciable variability between experiments compared with variability within experiments in some laboratories. No specific factor was identified which could explain this variability although it was noted that many different vehicles were used in the experiments. It is hoped that these data will help laboratories beginning studies with the rat micronucleus assay and those involved in the assessment of micronucleus assay results.

Digital object identifier (DOI): 10.1016/j.mrgentox.2019.503086

Mutation research, 849, 503141
January, 2020

Premature chromosome condensation assay to study influence of high-level natural radiation on the initial DNA double strand break repair in human G0 lymphocytes.

Vivek Kumar, P. R., Karuppasamy, C. V., Ramachandran, E. N., Anil Kumar, V., Jaikrishan, G., Das, Birajalaxmi

The inherent capacity of individuals to efficiently repair ionizing radiation induced DNA double strand breaks (DSBs) may be inherited, however, it is influenced by several epigenetic and environmental factors. A pilot study tested whether chronic low dose natural radiation exposure influences the rejoining of initial DNA DSBs induced by a 2 Gy γ-irradiation in 22 individuals from high (&gt;1.5 mGy/year) and normal (≤1.5 mGy/year) level natural radiation areas (H&amp;NLNRA) of Kerala. Rejoining of DSBs (during 1 h at 37 °C, immediately after irradiation) was evaluated at the chromosome level in the presence and absence of wortmannin (a potent inhibitor of DSB repair in normal human cells) using a cell fusion-induced premature chromosome condensation (PCC) assay. The PCC assay quantitates DSBs in the form of excess chromosome fragments in human G lymphocytes without the requirement for cell division. A quantitative difference was observed in the early rejoining of DNA DSBs between individuals from HLNRA and NLNRA, with HLNRA individuals showing a higher (P = 0.05) mean initial repair ratio. The results indicate an influence of chronic low dose natural radiation on initial DNA DSB repair in inhabitants of HLNRA of the Kerala coast.

Digital object identifier (DOI): 10.1016/j.mrgentox.2020.503141

Health physics, 117, 618--624
December, 2019

Biological Dosimetry Network in Africa: Establishment of a Dose-Response Curve Using Telomere and Centromere Staining.

Soumboundou, Mamadou, Nkengurutse, Innocent, Dossou, Julien, Colicchio, Bruno, Djebou, Catherine, Gadji, Macoura, Houenon, Germain, Dem, Ahmadou, Dedjan, Alexandre, Diarra, Mounibé, Adjibade, Rachad, Finot, Francis, Hempel, William, Dieterlen, Alain, Jeandidier, Eric, Rodriguez-Lafrasse, Claire, M'kacher, Radhia

Biological dosimetry, based on the relationship between the absorbed dose after exposure to ionizing radiation and the frequency of scored aberrations, has been and continues to be an important tool for estimating the dose after exposure. Dicentric chromosomes are considered to be the most specific and sensitive aberration related to radiation exposure. Here, we established the dose-response curve following in vitro irradiation of circulating lymphocytes from healthy donors from three African countries after scoring unstable chromosomal aberrations. Blood samples from 16 African donors were exposed to various doses (0 to 4 Gy) using an X-RAD320 x-ray system with a maximum photon energy of 250 kV at a dose rate of 0.1 Gy min. Blood lymphocytes were cultured for 48 h, and chromosomal aberrations were scored during the first mitosis by telomere and centromere staining. The distribution of dicentric chromosomes was determined. No dicentric chromosomes were found after the analysis of 2,669 first-division metaphases before in vitro exposure. We established a linear-quadratic dose-response curve based on the frequency of dicentric and ring chromosomes and calculated double-strand breaks, taking into account all scored aberrations. The generation of a specific dose-response curve for African donors will allow the practice of precise biological dosimetry in these countries. This work is the first step towards realizing an African biodosimetry network and the establishment of a biological dosimetry laboratory, which could play a major role in the application of radioprotection norms.

Digital object identifier (DOI): 10.1097/HP.0000000000001102

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 129, 181–189
March, 2019

Multi- and unilamellar liposomal encapsulation of ciprofloxacin as ways to modify its phototoxicity and photodegradation.

Zgadzaj, A, Giebułtowicz, J, Gubernator, J, Podbielska, M, Sommer, S, Zaremba-Czogalla, M, Nałęcz-Jaweckia, G

Liposomes are vesicular preparations that improve bioavailability of many pharmaceuticals, used even in ocular therapy. In addition, it is well documented that vesicular carriers could affect the photodegradation of molecules encapsulated inside, which is especially important for drugs that may exhibit phototoxicity when they are applied topically on sensitive light-exposed tissues. In this study, we investigated the effect of ciprofloxacin encapsulation into liposomes on its photodegradation, phototoxicity and photogenotoxicity in vitro at the concentration ranges applied in ophthalmology. We tested two variants of liposomes: large unilamellar vesicles (LUV) and multilamellar vesicles (MLV) in comparison to antibiotic solutions without phospholipids (CPX). On the basis of our research, the kinetics of ciprofloxacin photolysis was the fastest in formulations with vesicles with low drug-to-lipid ratio. Depending on vesicles type (drug-to-lipid ratio, MLV or LUV) and time of irradiation different degradants were produced. We proposed structures of the novel ciprofloxacin photolysis products characteristic for vesicles. We did not notice any photoprotective effect of application of ciprofloxacin encapsulation into liposomes, but it significantly affected the photodegradation product profile of the drug and the Photo-Irritation-Factor of the vesicular preparations. In the MTT and micronucleus assays impact of encapsulation was not as clearly visible.

Digital object identifier (DOI): 10.1016/j.ejps.2019.01.006

Cells, 8
January, 2019

Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest.

Coluzzi, Elisa, Leone, Stefano, Sgura, Antonella

Oxidative DNA damage, particularly 8-oxoguanine, represents the most frequent DNA damage in human cells, especially at the telomeric level. The presence of oxidative lesions in the DNA can hinder the replication fork and is able to activate the DNA damage response. In this study, we wanted to understand the mechanisms by which oxidative damage causes telomere dysfunction and senescence in human primary fibroblasts. After acute oxidative stress at telomeres, our data demonstrated a reduction in TRF1 and TRF2, which are involved in proper telomere replication and T-loop formation, respectively. Furthermore, we observed a higher level of γH2AX with respect to 53BP1 at telomeres, suggesting a telomeric replication fork stall rather than double-strand breaks. To confirm this finding, we studied the replication of telomeres by Chromosome Orientation-FISH (CO-FISH). The data obtained show an increase in unreplicated telomeres after hydrogen peroxide treatment, corroborating the idea that the presence of 8-oxoG can induce replication fork arrest at telomeres. Lastly, we analyzed the H3K9me3 histone mark after oxidative stress at telomeres, and our results showed an increase of this marker, most likely inducing the heterochromatinization of telomeres. These results suggest that 8-oxoG is fundamental in oxidative stress-induced telomeric damage, principally causing replication fork arrest.

Digital object identifier (DOI): 10.3390/cells8010019

Annals of laboratory medicine, 39, 91–95
January, 2019

Dose Estimation Curves Following In Vitro X-ray Irradiation Using Blood From Four Healthy Korean Individuals.

Jang, Mi Ae, Han, Eun Ae, Lee, Jin Kyung, Cho, Kwang Hwan, Shin, Hee Bong, Lee, You Kyoung

Cytogenetic dosimetry is useful for evaluating the absorbed dose of ionizing radiation based on analysis of radiation-induced chromosomal aberrations. We created two types of dose-response calibration curves for dicentric chromosomes (DC) and translocations (TR) induced by X-ray irradiation, using an electron linear accelerator, which is the most frequently used medical device in radiotherapy. We irradiated samples from four healthy Korean individuals and compared the resultant curves between individuals. Aberration yields were studied in a total of 31,800 and 31,725 metaphases for DC and TR, respectively, obtained from 11 X-ray irradiation dose-points (0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy). The dose-response relationship followed a linear-quadratic equation, Y=C+αD+βD², with the coefficients C=0.0011 for DC and 0.0015 for TR, α =0.0119 for DC and 0.0048 for TR, and β=0.0617 for DC and 0.0237 for TR. Correlation coefficients between irradiation doses and chromosomal aberrations were 0.971 for DC and 0.6 for TR, indicating a very strong and a moderate correlation, respectively. This is the first study implementing cytogenetic dosimetry following exposure to ionizing X-radiation.

Digital object identifier (DOI): 10.3343/alm.2019.39.1.91

Chemosphere, 215, 703–709
January, 2019

Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications.

Klingelfus, T, Disner, G R, Voigt, C L, Alle, L F, Cestari, M M, Leme, D M

Genotoxic effects of nanomaterials (NMs) have been controversially reported in literature, and the mode of action (MoA) via DNA oxidation is cited as the main damage caused by them. Evidence of nano-silver as a crosslinker has been previously reported by the present research team in an in vivo fish genotoxicity study. Thus, aiming to confirm the evidence about NMs as crosslinker agent, the present investigation elucidated the genotoxic potential of NMs and their genotoxic MoA through in vitro assay with RTG-2 cells line (rainbow trout gonadal) by exposure to nano-silver (PVP-coated) and nano-titanium. The types and levels of DNA damage were assessed by the Comet assay (standard alkaline, hOGG1-modified alkaline, and two crosslink-modified alkaline versions). It was demonstrated that the use of the standard alkaline Comet assay alone may inaccurately predict the genotoxicity of NMs since oxidative and crosslink DNA damages were also verified in RTG-2 cells when assessed by the modified versions of the alkaline protocol. More importantly, it was confirmed that both nano-silver and nano-titanium acted as DNA-protein crosslinkers through the Comet assay version with proteinase K. As both nano-silver and nano-titanium present a great risk to aquatic life, these findings reinforce the need of genotoxicity testing strategies that encompass the assessment of different types of DNA damage, in order to ensure an accurate prediction of the genotoxic potential of NMs.

Digital object identifier (DOI): 10.1016/j.chemosphere.2018.10.118

Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 847, 503087
2019

Optimization and validation of automated dicentric chromosome analysis for radiological/nuclear triage applications

Ryana, Terri L., Escalonaa, Maria B., Smith, Tammy L., Albanese, Joseph, Iddinsa, Carol J., Balajee, Adayabalam S.

Dicentric Chromosome Assay (DCA) is the most preferred cytogenetic technique for absorbed radiation dose assessment in exposed humans. However, DCA is somewhat impractical for triage application owing to its labor intensive and time consuming nature. Although lymphocyte culture for 48 h <em>in vitro</em> is inevitable for DCA, manual scoring of dicentric chromosomes (DCs) requires an additional time of 24–48 h, making the overall turnaround time of 72–96 h for dose estimation. To accelerate the speed of DC analysis for dose estimation, an automated tool was optimized and validated for triage mode of scoring. Several image training files were created to improve the specificity of automated DC analysis algorithm. Accuracy and efficiency of the automated (unsupervised) DC scoring was compared with the semi-automated scoring that involved human verification and correction of DCs (elimination of false positives and inclusion of true positives). DC scoring was performed by both automated and semi-automated modes for different doses of X-rays and γ-rays (0 Gy–5 Gy). Biodoses estimated from the frequencies of DCs detected by both automated (unsupervised) and semi-automated (supervised) scoring modes were grossly similar to the actual delivered doses in the range of 0.5 to 3 Gy of low LET radiation. We suggest that the automated DC tool can be effectively used for large scale radiological/nuclear incidents where a rapid segregation is essential for prioritizing moderately or severely exposed humans to receive appropriate medical countermeasures.

Digital object identifier (DOI): https://doi.org/10.1016/j.mrgentox.2019.503087

Radiation protection dosimetry, 182, 139–145
December, 2018

DEVELOPMENT OF A MINIATURIZED VERSION OF DICENTRIC CHROMOSOME ASSAY TOOL FOR RADIOLOGICAL TRIAGE.

Balajee, Adayabalam S, Smith, Tammy, Ryan, Terri, Escalona, Maria, Dainiak, Nicholas

Use of ionizing radiation (IR) in various industrial, medical and other applications can potentially increase the risk of medical, occupational or accidental human exposure. Additionally, in the event of a radiological or nuclear (R/N) incident, several tens of hundreds and thousands of people are likely to be exposed to IR. IR causes serious health effects including mortality from acute radiation syndrome and therefore it is imperative to determine the absorbed radiation dose, which will enable physicians in making an appropriate clinical 'life-saving' decision. The 'Dicentric Chromosome Assay (DCA)' is the gold standard for estimating the absorbed radiation dose but its performance is time consuming and laborious. Further, timely evaluation of dicentric chromosomes (DCs) for dose estimation in a large number of samples provides a bottleneck because of a limited number of trained personnel and a prolonged time for manual analysis. To circumvent some of these technical issues, we developed and optimized a miniaturized high throughput version of DCA (mini-DCA) in a 96-microtube matrix with bar-coded 1.4 ml tubes to enable the processing of a large number of samples. To increase the speed of DC analysis for radiation dose estimation, a semi-automated scoring was optimized using the Metafer DCScore algorithm. The accuracy of mini-DCA in dose estimation was verified and validated though comparison with conventional DCA performed in 15 ml conical tubes. The mini-DCA considerably reduced the sample processing time by a factor of 4 when compared to the conventional DCA. Further, the radiation doses estimated by mini-DCA using the triage mode of scoring (50 cells or 30 DCs) were similar to that of conventional DCA using 300-500 cells. The mini-DCA coupled with semi-automated DC scoring not only reduced the sample processing and analysis times by a factor of 4 but also enabled the processing of a large number of samples at once. Our mini-DCA method, once automated for high throughput robotic platforms, will be an effective radiological triage tool for mass casualty incidents.

Digital object identifier (DOI): 10.1093/rpd/ncy127