Publications
We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).
Use of automated imaging and analysis technology for the detection of aneuploidy in human sperm
OBJECTIVE: To determine the precision and accuracy of an automated cell counting system when applied to counting aneuploidies in sperm samples. DESIGN: Prospective pilot study. SETTING: Andrology clinic and research laboratory in a university teaching hospital. PATIENT(S): Ten anonymous sperm donors of known fertility and two patients seeking infertility treatment. INTERVENTION(S): Semen samples were processed for detection of aneuploidies for chromosomes 13, 18, 21, X, and Y with use of fluorescent in situ hybridization. The detection of chromosome aneuploidy was performed both by manual counting and by the use of an automated cell counting system with manual review of aneuploid sperm. MAIN OUTCOME MEASURE(S): Semen samples were judged for the percent aneuploidy for chromosomes 13, 18, 21, X, and Y when counted manually or with the use of the automated cell counting system and review by a technician. RESULT(S): The sperm aneuploidy rates determined by the automated cell counting system and careful review were comparable with those obtained by manual counting by a trained technician. CONCLUSION(S): These preliminary data demonstrate that automated cell counting devices may be useful in increasing productivity in aneuploidy detection in sperm and may become an alternative to the labor-intensive manual counting by technicians.
The clinical implementation of sperm chromosome aneuploidy testing:pitfalls and promises.
Severe male infertility has been shown to be associated with improper meiotic recombination and elevated sperm chromosome aneuploidy. Elevated sperm aneuploidy increases the risk of embryo lethality or fetal anomalies. Although difficulties in interpreting aneuploidy data still exist, advances in fluorescent in situ hybridization (FISH) technology have facilitated the study of sperm from patients with severe spermatogenesis defects, which has demonstrated the prudence of evaluating sperm chromosome aneuploidy in men with severe male factor infertility, such as nonobstructive azoospermia or severe ultrastructure defects, especially in cases of previous repeated in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) failure. Testing is also advisable in men with chromosome translocations and unexplained recurrent pregnancy loss, and it may be beneficial in patients with unexplained, repeated IVF failure. Automated FISH imaging and analysis technology is now available and is beneficial in reducing technician time analyzing sperm aneuploidy. Emerging technologies, such comparative genomic hybridization, may be beneficial in further improving the quality of data derived from aneuploidy analysis and reducing the cost of the assay.
Human ESCs predisposition to karyotypic instability: Is a matterof culture adaptation or differential vulnerability among hESC linesdue to inherent properties?
<p>BACKGROUND: The use of human embryonic stem cells (hESCs) in research is increasing and hESCs hold the promise for many biological, clinical and toxicological studies. Human ESCs are expected to be chromosomally stable since karyotypic changes represent a pitfall for potential future applications. Recently, several studies have analysed the genomic stability of several hESC lines maintained after prolonged in vitro culture but controversial data has been reported. Here, we prompted to compare the chromosomal stability of three hESC lines maintained in the same laboratory using identical culture conditions and passaging methods. RESULTS: Molecular cytogenetic analyses performed in three different hESC lines maintained in parallel in identical culture conditions revealed significant differences among them in regard to their chromosomal integrity. In feeders, the HS181, SHEF-1 and SHEF-3 hESC lines were chromosomally stable up to 185 passages using either mechanical or enzymatic dissection methods. Despite the three hESC lines were maintained under identical conditions, each hESC line behaved differently upon being transferred to a feeder-free culture system. The two younger hESC lines, HS181 (71 passages) and SHEF-3 (51 passages) became chromosomally unstable shortly after being cultured in feeder-free conditions. The HS181 line gained a chromosome 12 by passage 17 and a marker by passage 21, characterized as a gain of chromosome 20 by SKY. Importantly, the mosaicism for trisomy 12 gradually increased up to 89% by passage 30, suggesting that this karyotypic abnormality provides a selective advantage. Similarly, the SHEF-3 line also acquired a trisomy of chromosome 14 as early as passage 10. However, this karyotypic aberration did not confer selective advantage to the genetically abnormal cells within the bulk culture and the level of mosaicism for the trisomy 14 remained overtime between 15%-36%. Strikingly, however, a much older hESC line, SHEF-1, which was maintained for 185 passages in feeders did not undergo any numerical or structural chromosomal change after 30 passages in feeder-free culture and over 215 passages in total. CONCLUSION: These results support the concept that feeder-free conditions may partially contribute to hESC chromosomal changes but also confirm the hypothesis that regardless of the culture conditions, culture duration or splitting methods, some hESC lines are inherently more prone than others to karyotypic instability.</p>
Unusually stable abnormal karyotype in a highly aggressive melanomanegative for telomerase activity.
ABSTRACT: Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and quantitative Fluorescence in Situ Hybridization (FISH). Interestingly this tumor had no detectable telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial telomere lengthening pathway.
High concordance between immunohistochemistry and fluorescence in situ hybridization testing for HER2 status in breast cancer requires a normalized IHC scoring system
The American Society of Clinical Oncologists and College of American Pathologists have recently released new guidelines for laboratory testing of HER2 status in breast cancer, which require high levels (95%) of concordance between immunohistochemistry positive (3+) and fluorescence in situ hybridization-amplified cases, and between immunohistochemistry negative (0/1+) and fluorescence in situ hybridization-nonamplified cases; these required levels of concordance are significantly higher than those found in most published studies. We tested the hypothesis that a modification of the HER2 immunohistochemistry scoring system could significantly improve immunohistochemistry and fluorescence in situ hybridization concordance. A total of 6604 breast cancer specimens were evaluated for HER2 status by both immunohistochemistry and fluorescence in situ hybridization using standard methodologies. Results were compared when the standard immunohistochemistry scoring system was replaced by a normalized scoring system in which the HER2 score was derived by subtracting the score on the non-neoplastic breast epithelium from that on the tumor cells. Among the 6604 tumors, using a non-normalized immunohistochemistry scoring system, 267/872 (30.6%) of the immunohistochemistry 3+ cases proved to be fluorescence in situ hybridization nonamplified, whereas using the normalized scoring system only 30/562 (5.3%) of immunohistochemistry 3+ cases proved to be 'false positive'. The concordance rate between immunohistochemistry 3+ and fluorescence in situ hybridization-amplified cases using the normalized scoring method was 94.7%, whereas the concordance using the non-normalized method was only 69.4%. Extremely high concordance between immunohistochemistry and fluorescence in situ hybridization assessment of HER2 status in breast cancer is achievable, but to attain this high level of concordance, modification of the FDA-approved immunohistochemistry scoring system is required.
New cutpoints to identify increased HER2 copy number: analysis of a large, population-based cohort with long-term follow-up
BACKGROUND: HER2 gene amplification and/or protein overexpression in breast cancer is associated with a poor prognosis and predicts response to anti-HER2 therapy. We examine the natural history of breast cancers in relationship to increased HER2 copy numbers in a large population-based study. PATIENTS AND METHODS: HER2 status was measured by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in approximately 1,400 breast cancer cases with greater than 15 years of follow-up. Protein expression was evaluated with two different commercially-available antibodies. RESULTS: We looked for subgroups of breast cancer with different clinical outcomes, based on HER2 FISH amplification ratio. The current HER2 ratio cut point for classifying HER2 positive and negative cases is 2.2. However, we found an increased risk of disease-specific death associated with FISH ratios of >1.5. An 'intermediate' group of cases with HER2 ratios between 1.5 and 2.2 was found to have a significantly better outcome than the conventional 'amplified' group (HER2 ratio >2.2) but a significantly worse outcome than groups with FISH ratios less than 1.5. CONCLUSION: Breast cancers with increased HER2 copy numbers (low level HER2 amplification), below the currently accepted positive threshold ratio of 2.2, showed a distinct, intermediate outcome when compared to HER2 unamplified tumors and tumors with HER2 ratios greater than 2.2. These findings suggest that a new cut point to determine HER2 positivity, at a ratio of 1.5 (well below the current recommended cut point of 2.2), should be evaluated.
Sequence based high resolution chromosomal CGH.
<p>We aimed to directly align a chromosomal CGH (cCGH) pattern with the gene mapping data by taking advantage of the clustering of the GGCC motif at certain positions in the human genome. The alignment of chromosomal with sequence data was achieved by superimposition of (i) the fluorescence intensity of the sequence specific fluorochrome, Chromomycin A3 (CMA3), (ii) the cCGH fluorescence intensity profile of individual chromosomes and (iii) the GGCC density profile extracted from the Ensembl genome sequence database. The superimposition of these three pieces of information allowed us to precisely localize regions of amplification in the neuroblastoma cell line STA-NB-15. Two prominent cCGH peaks were noted, one at 2p24.3, the position 15.4 mega base (Mb), and the other at 2p23.2, 29.51 Mb. FISH and high resolution array CGH (aCGH) experiments disclosed an amplification of MYCN (16 Mb) and ALK (29.2-29.9 Mb), thus confirming the cCGH data. The combined visualization of sequence information and cCGH data drastically improves the resolution of the method to less than 2 Mb.</p>
Entamoeba histolytica encodes unique formins, a subset of which regulates DNA content and cell division.
The formin family of proteins mediates dynamic changes in actin assembly in eukaryotes, and therefore it is important to understand the function of these proteins in Entamoeba histolytica, where actin forms the major cytoskeletal network. In this study we have identified the formin homologs encoded in the E. histolytica genome based on sequence analysis. Using multiple tools, we have analyzed the primary sequences of the eight E. histolytica formins and discovered three subsets: (i) E. histolytica formin-1 to -3 (Ehformin-1 to -3), (ii) Ehformin-4, and (iii) Ehformin-5 to -8. Two of these subsets (Ehformin-1 to -3 and Ehformin-4) showed significant sequence differences from their closest homologs, while Ehformin-5 to -8 were unique among all known formins. Since Ehformin-1 to -3 showed important sequence differences from Diaphanous-related formins (DRFs), we have studied the functions of Ehformin-1 and -2 in E. histolytica transformants. Like other DRFs, Ehformin-1 and -2 associated with F-actin in response to serum factors, in pseudopodia, in pinocytic and phagocytic vesicles, and at cell division sites. Ehformin-1 and -2 also localized with the microtubular assembly in the nucleus, indicating their involvement in genome segregation. While increased expression of Ehformin-1 and -2 did not affect phagocytosis or motility, it clearly showed an increase in the number of binucleated cells, the number of nuclei in multinucleated cells, and the average DNA content of each nucleus, suggesting that these proteins regulate both mitosis and cytokinesis in E. histolytica.
Assessing Candidate Gene nsSNPs for Phenotypic Differences in Double-StrandBreak Repair Using Radiation-Induced gammaH2A.X Foci.
Nonsynonymous SNPs (nsSNPs) in DNA repair genes may be important determinants of DNA damage and cancer risk. We applied a set of screening criteria to a large number of nsSNPs and selected a subset of SNPs that were likely candidates for phenotypic effects on DNA double-strand break repair (DSBR). In order to induce and follow DSBR, we exposed panels of cell lines to gamma irradiation and followed the formation and disappearance of gammaH2A.X foci over time. All panels of cell lines showed significant increases in number, intensity, and area of foci at both the 1-hour and 3-hour time points. Twenty four hours following exposure, the number of foci returned to preexposure levels in all cell lines, whereas the size and intensity of foci remained significantly elevated. We saw no significant difference in gammaH2A.X foci between controls and any of the panels of cell lines representing the different nsSNPs.
An Evaluation of the Effectiveness of a Semi-automatic MetaphaseLocating and On-screen Karyotyping System.
Karyotyping is currently the #gold##standard# test for the detection of human chromosome abnormalities. Over the past 40 years, changes in techniques have improved the band definition of chromosomes; however, very little has changed with respect to improvements through automation. In this study, we compare chromosome analysis by traditional microscopy with semi-automatic karyotyping using robotic equipment from MetaSystems (Altlussheim, Germany). Analysis using MetaSystems was significantly quicker than using the microscope with an average reduction in analysis time of 26.5 minutes; for the average analyst, this equates to a reduction of 27 percent. Analysis checking times using MetaSystems showed even greater improvement with an average reduction in checking time of 11.4 minutes; for the average checker, this equates to a reduction of 48 percent. The MetaSystems semi-automatic karyotyping equipment offers increased throughput of cases for karyotype analysis while maintaining accuracy.
Development of automated brightfield double In Situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) for breast carcinomas and an assay performance comparison to manual dual color HER2 fluorescence In Situ hybridizatio
BACKGROUND: Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas. METHODS: The BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark(R) XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatase (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives. RESULTS: Sequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 - 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 - 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 - 1.0000). CONCLUSION: Automated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.
Chromosome inter- and intrachanges detected by arm-specific DNA probes in the progeny of human lymphocytes exposed to energetic heavy ions.
We measured residual cytogenetic damage in the progeny of human peripheral blood lymphocytes exposed to 1 GeV/ nucleon iron ions or gamma rays. Arm-specific DNA probes for chromosome 1 were used to detect aberrations as a function of dose in cells harvested 144 h after exposure. In addition, arm-specific mFISH was applied to samples exposed to a single dose of 2 Gy. These methods allowed the detection of interarm intrachanges (pericentric inversions) in addition to interchanges. The ratio of these types of aberrations (F ratio) has been proposed as a fingerprint of exposure to densely ionizing radiation. The fractions of aberrant cells in the progeny of cells exposed to iron ions were similar to those in the population exposed to gamma rays, possibly because many rearrangements induced by heavy ions ultimately lead to cell death. Simple inter- and intrachanges were also similar, but more complex rearrangements were found in cells that survived after exposure to iron ions. We did not find a significant difference in the ratio of simple interchanges to simple intrachanges for the two radiation types. However, iron ions induced a much higher frequency of events involving both inter- and intrachanges. We conclude that these complex rearrangements represent a hallmark of exposure to heavy ions and may be responsible of the decrease of the F ratio with increasing LET reported in the literature in some in vitro and in vivo experiments.
Mutations in the pericentrin (PCNT) gene cause primordial dwarfism
Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).
A novel resource for genomics of Triticeae: BAC library specificfor the short arm of rye (Secale cereale L.) chromosome 1R (1RS).
<p>BACKGROUND: Genomics of rye (Secale cereale L.) is impeded by its large nuclear genome (1C approximately 7,900 Mbp) with prevalence of DNA repeats (> 90%). An attractive possibility is to dissect the genome to small parts after flow sorting particular chromosomes and chromosome arms. To test this approach, we have chosen 1RS chromosome arm, which represents only 5.6% of the total rye genome. The 1RS arm is an attractive target as it carries many important genes and because it became part of the wheat gene pool as the 1BL.1RS translocation. RESULTS: We demonstrate that it is possible to sort 1RS arm from wheat-rye ditelosomic addition line. Using this approach, we isolated over 10 million of 1RS arms using flow sorting and used their DNA to construct a 1RS-specific BAC library, which comprises 103,680 clones with average insert size of 73 kb. The library comprises two sublibraries constructed using HindIII and EcoRI and provides a deep coverage of about 14-fold of the 1RS arm (442 Mbp). We present preliminary results obtained during positional cloning of the stem rust resistance gene SrR, which confirm a potential of the library to speed up isolation of agronomically important genes by map-based cloning. CONCLUSION: We present a strategy that enables sorting short arms of several chromosomes of rye. Using flow-sorted chromosomes, we have constructed a deep coverage BAC library specific for the short arm of chromosome 1R (1RS). This is the first subgenomic BAC library available for rye and we demonstrate its potential for positional gene cloning. We expect that the library will facilitate development of a physical contig map of 1RS and comparative genomics of the homoeologous chromosome group 1 of wheat, barley and rye.</p>
Defining the steps that lead to cancer: Replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.
Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the ‘law of genotype–phenotype correlation’, since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how ‘tumor-unspecific’ aneuploidy leads to cancer.
Defining the steps that lead to cancer: replicative telomere erosion,aneuploidy and an epigenetic maturation arrest of tissue stem cells.
Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as presented here, may end the debate on if and how 'tumor-unspecific' aneuploidy leads to cancer.
Automated detection of irradiated food with the comet assay.
Food irradiation is the process of exposing food to ionising radiation in order to disinfect, sanitise, sterilise and preserve food or to provide insect disinfestation. Irradiated food should be adequately labelled according to international and national guidelines. In many countries, there are furthermore restrictions to the product-specific maximal dose that can be administered. Therefore, there is a need for methods that allow detection of irradiated food, as well as for methods that provide a reliable dose estimate. In recent years, the comet assay was proposed as a simple, rapid and inexpensive method to fulfil these goals, but further research is required to explore the full potential of this method. In this paper we describe the use of an automated image analysing system to measure DNA comets which allow the discrimination between irradiated and non-irradiated food as well as the set-up of standard dose-response curves, and hence a sufficiently accurate dose estimation.
Elevated chromosome translocation frequencies in New Zealand nuclear test veterans.
In 1957/58 the British Government conducted a series of nuclear tests in the mid-Pacific codenamed Operation Grapple, which involved several naval vessels from Britain and New Zealand. Two New Zealand frigates with 551 personnel onboard were stationed at various distances between 20 and 150 nautical miles from ground zero. In the present study we applied the cytomolecular technique mFISH (multicolour fluorescent in situ hybridisation) to investigate a potential link between chromosome abnormalities and possible past radiation exposure in New Zealand nuclear test veterans who participated in Operation Grapple. Compared to age matched controls, the veterans showed significantly higher (P < 0.0001) frequencies of chromosomal abnormalities (275 translocations and 12 dicentrics in 9,360 cells vs. 96 translocations and 1 dicentric in 9,548 cells in the controls), in addition to a significant excess of CCRs (complex chromosomal rearrangements) in the veterans. A Kolmogorov-Smirnoff test showed that the distributions of translocations for the two groups were significantly different.
A variant TMPRSS2 isoform and ERG fusion product in prostate cancerwith implications for molecular diagnosis.
<p>Prostate cancer is the most commonly diagnosed cancer among men in the United States. Recently, fusion of <em>TMPRSS2</em> with ETS family oncogenic transcription factors has been identified as a common molecular alteration in prostate cancer, where most often the rearrangement places <em>ERG</em> under the androgen-regulated transcriptional control of <em>TMPRSS2</em>. Here, we carried out rapid amplification of cDNA ends (RACE) on a prostate cancer specimen carrying an atypical aberration discovered by array-based comparative genomic hybridization (array CGH), suggesting an alternative fusion partner of <em>ERG</em>. We identified novel transcribed sequences fused to <em>ERG</em>, mapping 4 kb upstream of the <em>TMPRSS2</em> start site. The sequences derive from an apparent second <em>TMPRSS2</em> isoform, which we found also expressed in some prostate tumors, suggesting similar androgen-regulated control. In a reverse transcription-polymerase chain reaction (RT-PCR)-based survey of 63 prostate tumor specimens (54 primary and nine lymph node metastases), 44 (70%) cases expressed either the known or novel variant <em>TMPRSS2</em>-<em>ERG</em> fusion, 28 (44%) expressed both, 10 (16%) expressed only the known, and notably six (10%) expressed only the variant isoform fusion. In this specimen set, the presence of a <em>TMPRSS2</em>-<em>ERG</em> fusion showed no statistical association with tumor stage, Gleason grade or recurrence-free survival. Nonetheless, the discovery of a novel variant <em>TMPRSS2</em> isoform-<em>ERG</em> fusion adds to the characterization of ETS-family rearrangements in prostate cancer, and has important implications for the accurate molecular diagnosis of <em>TMPRSS2</em>-<em>ETS</em> fusions.</p>