Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Application

Filter by Product/Solution


Diagn Pathol, 6, 76
2011

FISH as an effective diagnostic tool for the management of challengingmelanocytic lesions.

Mathew W. Moore, Robert Gasparini

<p>The accuracy of melanoma diagnosis continues to challenge the pathology community, even today with sophisticated histopathologic techniques. Melanocytic lesions exhibit significant morphological heterogeneity. While the majority of biopsies can be classified as benign (nevus) or malignant (melanoma) using well-established histopathologic criteria, there exists a cohort for which the prediction of clinical behaviour and invasive or metastatic potential is difficult if not impossible to ascertain on the basis of morphological features alone. Multiple studies have shown that there is significant disagreement between pathologists and even expert dermatopathologists in the diagnosis of this subgroup of difficult melanocytic lesions.A four probe FISH assay was utilized to analyse a cohort of 500 samples including 157 nevus, 176 dysplastic nevus and 167 melanoma specimens. Review of the lesions determined the assay identified genetic abnormalities in a total of 83.8% of melanomas, and 1.9% of nevus without atypia, while genetic abnormalities were identified in 6.3%, 6.7%, and 10.3% of nevus identified with mild, moderate and severe atypia, respectively.Based on this study, inheritable genetic damage/instability identified by FISH testing is a hallmark of a progressive malignant process, and a valuable diagnostic tool for the identification of high risk lesions.</p>

Microscopy Research and Technique
2011

Automated signal pattern evaluation of a bladder cancer specific multiprobe‐fish assay applying a user‐trainable workstation

Pajor, Gabor, Alpar, Donat, Kajtar, Bela, Melegh, Bela, Somogyi, Laszlo, Kneif, Maria, Bollmann, Daniel, Pajor, Laszlo, Sule, Norbert

<p>Signal pattern enumeration of Urovysion Fluorescence in Situ Hybridization test is tedious and requires great experience. Our aim was to eliminate human interaction by automating the process, using an adoptable, automated image acquisition, and analysis system. For extensive analytical analysis control, cell populations were used, while preliminary clinical study was performed on 21 patients with clinical suspicion for bladder cancer. All investigations were carried out using an automated user-trainable workstation (Metafer-Metacyte). The system identified nuclei with a specificity and sensitivity of 92.7 and 96.6%, respectively, while signal detection accuracy was 81.1% on average. Both analytical and diagnostic accuracy of automated analysis was comparable to manual approach (94.8 and 71% vs. 97.9 and 76%, respectively), but classification accuracy increased with degree of polysomy, thus diagnostic sensitivity in low grade, low stage cases was poor. It is possible to automate signal enumeration of Urovysion using a user-trainable system, and achieve efficiency comparable to manual analysis. Previously introduced automated immunophenotypic targeting should further increase diagnostic sensitivity, while resulting in a comprehensively automated method. However, the problem of reduced detection accuracy in cases featured with low polysomy is likely to remain a great challenge of automated signal enumeration.</p>

Mol Cytogenet, 4(1), 8
2011

A rare case of t(11;22) in a mantle cell lymphoma like B-cell neoplasiaresulting in a fusion of IGL and CCND1: case report.

Cristiano Krings Rocha, Inka Praulich, Iris Gehrke, Michael Hallek, Karl-Anton Kreuzer

ABSTRACT: The chromosomal translocation (11;14)(q13;q32) rearranging the locus for cyclin D1 (CCND1) to that of the immunoglobulin heavy chain (IGH) can be found in virtually all cases of mantle cell lymphoma (MCL), while other CCND1 translocations are extremely rare. As CCND1 overexpression and activation is a hallmark of MCL it is regarded as a central biological mechanism in the development and maintenance of this disease.Here we present a patient initially diagnosed with chronic lymphocytic leukemia (CLL) where chromosome banding analysis revealed, among other aberrations, a translocation (11;22)(q13;q11.2). We show by fluorescence in situ hybridization (FISH) analysis that on chromosome 22 the immunoglobulin light chain lambda (IGL) is involved in this cytogenetic aberration. Additionally, we demonstrate the resulting overexpression of CCND1 on the RNA and protein level, thereby consolidating the new diagnosis of a MCL-like B-cell neoplasia. Summing up, we described a rare case of t(11;22)(q13;q11.2) in a MCL-like neoplasia and showed that this aberration leads to an overexpression of CCND1 which is regarded as a key biological feature in MCL. This case underlines the importance of cytogenetic analyses especially in atypical cases of B cell lymphomas.

Methods Mol Biol, 724, 91–103
2011

Automated Analysis of FISH-Stained HER2/neu Samples with Metafer.

Christian Schunck, Eiman Mohammad

<p>The HER2/neu gene (also known as ERBB2) is located on chromosome 17 (q11.2-q12) and encodes a glycoprotein known to be a member of the epidermal growth factor receptor family. Clinically, the determination of its amplification status is of utmost importance, as 10-35% of invasive human breast carcinomas come along with HER2/neu overexpression, and treatment has to be adjusted accordingly. Here a method to analyze HER2 FISH samples with digital microscopy, using the slide scanning -platform Metafer PV (MetaSystems, Altlussheim, Germany), is presented. Metafer PV is a system for the automation of HER2/neu FISH assay analysis of samples hybridized with the Abbott(™) PathVysion(®) probe kit.</p>

BMC Biotechnol, 11, 121
2011

Combining M-FISH and Quantum Dot technology for fast chromosomalassignment of transgenic insertions.

Mohammed Yusuf, David L V Bauer, Daniel M Lipinski, Robert E MacLaren, Richard Wade-Martins, Kalim U Mir, Emanuela V Volpi

Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH) is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified.Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH), for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD) conjugate for the transgene detection.Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.

Pediatric Blood & Cancer, 6(6), 1239-1242
December, 2010

Sex chromosome changes after sex-mismatched allogeneic bone marrow transplantation can mislead the chimerism analysis

Donát Alpár, Gergely Nagy, Carsten Hohoff, Béla Kajtár, Katalin Bartyik, Judit Hermesz, Pál Jáksó, Hajnalka Andrikovics, László Kereskai, László Pajor

A 12-year-old male with pre-B-cell acute lymphoblastic leukemia with cryptic BCR/ABL rearrangement underwent sex-mismatched allogeneic bone marrow transplantation (allo-BMT). Contradictory results were provided by various chimerism analyses 3 months later. Y-chromosome-specific quantitative polymerase chain reaction and sex chromosome-specific interphase fluorescence in situ hybridization (i-FISH) showed complete donor chimerism. Analysis of autosomal short tandem repeats (A-STR), BCR/ABL i-FISH test, and X-STR haplotype indicated relapse. Metaphase-FISH and combined BCR/ABL and sex chromosome-specific i-FISH patterns revealed loss of the Y-chromosome and duplication of the X-chromosome in the host cells. Sex chromosome changes after allo-BMT can cause significant difficulties in chimerism analysis.

Cancer Genet Cytogenet, 203(2), 209–214
December, 2010

Clonal heterogeneity and chromosomal instability at disease presentationin high hyperdiploid acute lymphoblastic leukemia.

Anna Talamo, Yves Chalandon, Alfio Marazzi, Martine Jotterand

<p>Although aneuploidy has many possible causes, it often results from underlying chromosomal instability (CIN) leading to an unstable karyotype with cell-to-cell variation and multiple subclones. To test for the presence of CIN in high hyperdiploid acute lymphoblastic leukemia (HeH ALL) at diagnosis, we investigated 20 patients (10 HeH ALL and 10 non-HeH ALL), using automated four-color interphase fluorescence in situ hybridization (I-FISH) with centromeric probes for chromosomes 4, 6, 10, and 17. In HeH ALL, the proportion of abnormal cells ranged from 36.3% to 92.4%, and a variety of aneuploid populations were identified. Compared with conventional cytogenetics, I-FISH revealed numerous additional clones, some of them very small. To investigate the nature and origin of this clonal heterogeneity, we determined average numerical CIN values for all four chromosomes together and for each chromosome and patient group. The CIN values in HeH ALL were relatively high (range, 22.2-44.7%), compared with those in non-HeH ALL (3.2-6.4\), thus accounting for the presence of numerical CIN in HeH ALL at diagnosis. We conclude that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by I-FISH in HeH ALL at presentation, which would corroborate the potential role of CIN in tumor pathogenesis.</p>

Int J Legal Med, 124(6), 513–521
November, 2010

Laser capture microdissection in forensic research: a review.

Mado Vandewoestyne, Dieter Deforce

In forensic sciences, short tandem repeat (STR) analysis has become the prime tool for DNA-based identification of the donor(s) of biological stains and/or traces. Many traces, however, contain cells and, hence, DNA, from more than a single individual, giving rise to mixed genotypes and the subsequent difficulties in interpreting the results. An even more challenging situation occurs when cells of a victim are much more abundant than the cells of the perpetrator. Therefore, the forensic community seeks to improve cell-separation methods in order to generate single-donor cell populations from a mixed trace in order to facilitate DNA typing and identification. Laser capture microdissection (LCM) offers a valuable tool for precise separation of specific cells. This review summarises all possible forensic applications of LCM, gives an overview of the staining and detection options, including automated detection and retrieval of cells of interest, and reviews the DNA extraction protocols compatible with LCM of cells from forensic samples.

Cancer Res
October, 2010

Evidence of an Adaptive Response Targeting DNA Nonhomologous EndJoining and Its Transmission to Bystander Cells.

Holger Klammer, Munira Kadhim, George Iliakis

<p>Adaptive response (AR) is a term describing resistance to ionizing radiation-induced killing or formation of aberrant chromosomes that is mediated by pre-exposure to low ionizing radiation doses. The mechanism of AR remains elusive. Because cell killing and chromosome aberration formation derive from erroneous processing of DNA double-strand breaks (DSB), AR may reflect a modulation of DSB processing by nonhomologous end joining (NHEJ) or homologous recombination repair. Here, we use plasmid end-joining assays to quantify modulations induced by low ionizing radiation doses to NHEJ, the dominant pathway of DSB repair in higher eukaryotes, and investigate propagation of this response through medium transfer to nonirradiated bystander cells. Mouse embryo fibroblasts were conditioned with 10 to 1000 mGy and NHEJ quantified at different times thereafter by challenging with reporter plasmids containing a DSB. We show robust increases in NHEJ efficiency in mouse embryo fibroblasts exposed to ionizing radiation &gt;100 mGy, irrespective of reporter plasmid used. Human tumor cells also show AR of similar magnitude that is compromised by caffeine, an inhibitor of DNA damage signaling acting by inhibiting ATM, ATR, and DNA-PKcs. Growth medium from pre-irradiated cells induces a caffeine-sensitive AR in nonirradiated cells, similar in magnitude to that seen in irradiated cells. In bystander cells, γH2AX foci are specifically detected in late S-G(2) phase and are associated with Rad51 foci that signify the function of homologous recombination repair, possibly on DNA replication-mediated DSBs. The results point to enhanced NHEJ as a mechanism of AR and suggest that AR may be transmitted to bystander cells through factors generating replication-mediated DSBs. Cancer Res; 70(21); 8498-506. ©2010 AACR.</p>

Int J Radiat Oncol Biol Phys
October, 2010

Widespread Dependence of Backup NHEJ on Growth State: Ramificationsfor the Use of DNA-PK Inhibitors.

Satyendra K Singh, Wenqi Wu, Lihua Zhang, Holger Klammer, Minli Wang, George Iliakis

PURPOSE: The backup pathway of nonhomologous end joining (B-NHEJ) enables cells to process DNA double-strand breaks (DSBs) when the DNA-PK-dependent pathway of NHEJ (D-NHEJ) is compromised. Our previous results show marked reduction in the activity of B-NHEJ when LIG4(-/-) mouse embryo fibroblasts (MEFs) cease to grow and enter a plateau phase. The dependence of B-NHEJ on growth state is substantially stronger than that of D-NHEJ and points to regulatory mechanisms or processing determinants that require elucidation. Because the different D-NHEJ mutants show phenotypes distinct in their details, it is necessary to characterize the dependence of their DSB repair capacity on growth state and to explore species-specific responses. METHODS AND MATERIALS: DSB repair was measured in cells of different genetic background from various species using pulsed-field gel electrophoresis, or the formation of ã-H2AX foci, at different stages of growth. RESULTS: Using pulsed-field gel electrophoresis, we report a marked reduction of B-NHEJ during the plateau phase of growth in KU and XRCC4, mouse or Chinese hamster, mutants. Notably, this reduction is only marginal in DNA-PKcs-deficient cells. However, reduced B-NHEJ is also observed in repair proficient, plateau-phase cells after treatment with DNA-PK inhibitors. The reduction of B-NHEJ activity in the plateau phase of growth does not derive from the reduced expression of participating proteins, is detectable by ã-H2AX foci analysis, and leads to enhanced cell killing. CONCLUSIONS: These results further document the marked dependence on growth state of an essential DSB repair pathway and show the general nature of the effect. Molecular characterization of the mechanism underlying this response will help to optimize the administration of DNA repair inhibitors as adjuvants in radiation therapy.

Proc Natl Acad Sci U S A, 107(32), 14205–14210
August, 2010

Inducible response required for repair of low-dose radiation damagein human fibroblasts.

Saskia Grudzenski, Antonia Raths, Sandro Conrad, Claudia E. Rübe, Markus Löbrich

<p>Ionizing radiation (IR) induces a variety of DNA lesions among which DNA double-strand breaks (DSBs) are the biologically most significant. It is currently unclear if DSB repair is equally efficient after low and high doses. Here, we use gamma-H2AX, phospho-ATM (pATM), and 53BP1 foci analysis to monitor DSB repair. We show, consistent with a previous study, that the kinetics of gamma-H2AX and pATM foci loss in confluent primary human fibroblasts are substantially compromised after doses of 10 mGy and lower. Following 2.5 mGy, cells fail to show any foci loss. Strikingly, cells pretreated with 10 microM H(2)O(2) efficiently remove all gamma-H2AX foci induced by 10 mGy. At the concentration used, H(2)O(2) produces single-strand breaks and base damages via the generation of oxygen radicals but no DSBs. Moreover, 10 microM H(2)O(2) up-regulates a set of genes that is also up-regulated after high (200 mGy) but not after low (10 mGy) radiation doses. This suggests that low radical levels induce a response that is required for the repair of radiation-induced DSBs when the radiation damage is too low to cause the induction itself. To address the in vivo significance of this finding, we established gamma-H2AX and 53BP1 foci analysis in various mouse tissues. Although mice irradiated with 100 mGy or 1 Gy show efficient gamma-H2AX and 53BP1 foci removal during 24 h post-IR, barely any foci loss was observed after 10 mGy. Our data suggest that the cellular response to DSBs is substantially different for low vs. high radiation doses.</p>

Leuk Res, 34(8), 1002–1006
August, 2010

Recurrent involvement of heterochromatic regions in multiple myeloma-amulticolor FISH study.

Kathrin Lange, Dorothea Gadzicki, Brigitte Schlegelberger, Gudrun Göhring

Chromosome aberrations are important prognostic markers in multiple myeloma (MM), but their identification may be hampered by complexity of the karyotypes. Using multicolor fluorescence in situ hybridization (mFISH), we found cryptic aberrations in 7 of 10 patients with a complex karyotype. Moreover, in addition to typical aberrations involving 1q, 13q, 14q and 17p and structural aberrations in chromosomes 1, 6, 9 and 19, (iso)dicentric chromosomes and whole-arm translocations were detected. These chromosome aberrations were generated by breaks in heterochromatic regions indicating an increased breakage of these regions, which may predispose to the generation of chromosome aberrations in multiple myeloma.

J Nucl Med, 51(8), 1318–1325
August, 2010

In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in bloodcells after radioiodine therapy of differentiated thyroid cancer.

Michael Lassmann, Heribert Hänscheid, Daniela Gassen, Johannes Biko, Viktor Meineke, Christoph Reiners, Harry Scherthan

DNA double-strand breaks (DSBs) are critical cellular lesions that can result from ionizing radiation exposure. A marker for DSB formation is the phosphorylated form of the histone H2 variant H2AX (gamma-H2AX). DSBs also attract the damage sensor p53-binding protein 1 (53BP1) to the DSB-containing chromatin, because 53BP1 associates with the DSB-surrounding chromatin. We studied the induction, persistence, and disappearance of radiation-induced gamma-H2AX and 53BP1 foci after the first (131)I therapy of patients with differentiated thyroid carcinoma, a model for protracted, continuous, internal whole-body irradiation. METHODS: Twenty-six patients (7 men, 19 women; mean age +/- SD, 42 +/- 13 y) underwent posttherapeutic blood dosimetry according to the standard operating procedure of the European Association of Nuclear Medicine, including peripheral blood sampling and external dose rate measurements at 2-144 h after administration of (131)I for thyroid remnant ablation. The mean time curves of dose accumulation and dose rate to the blood were compared with the mean gamma-H2AX and 53BP1 foci counts over the same period in samples of mononuclear peripheral blood leukocytes. RESULTS: The mean absorbed dose to the blood in 24 patients evaluable for physical dosimetry was 0.31 +/- 0.10 Gy (minimum, 0.17 Gy; maximum, 0.57 Gy). After 24 h, the mean daily dose increment was less than 0.05 Gy. The excess focus counts per nucleus–that is, nuclear foci in excess of the low background count–peaked at 2 h after radioiodine administration (median excess foci for gamma-H2AX [n = 21 patients], 0.227, and for 53BP1 [n = 19 patients], 0.235) and progressively declined thereafter. Significantly elevated numbers of excess focus counts per nucleus (median excess foci for gamma-H2AX [n = 8 patients], 0.054, and for 53BP1 [n = 6 patients], 0.046) still were present at 120-144 h after therapy. Because the rate of occurrence of radiation-induced focus counts per nucleus per absorbed dose varied considerably among patients, a dose-response relationship could not be established for this series as a whole. The number of excess radiation-induced focus counts per nucleus per absorbed dose rate increased with time, potentially indicating a slower rate of DNA repair or, alternatively, a higher de novo rate of focus formation. The values over time of both radiation-induced DSB markers correlated closely (r(2) = 0.973). CONCLUSION: Radiation-induced gamma-H2AX and 53BP1 nuclear foci are useful markers for detecting radiation exposure after radionuclide incorporation, even for absorbed doses to the blood below 20 mGy.

Mutat Res, 701(1), 52–59
August, 2010

Complex exchanges are responsible for the increased effectivenessof C-ions compared to X-rays at the first post-irradiation mitosis.

Ryonfa Lee, Sylwester Sommer, Carola Hartel, Elena Nasonova, Marco Durante, Sylvia Ritter

<p>The purpose of the present study was to investigate as to what extent differences in the linear energy transfer (LET) are reflected at the chromosomal level. For this study human lymphocytes were exposed to 9.5 MeV/u C-ions (1 or 2 Gy, LET=175 keV/microm) or X-rays (1-6 Gy), harvested at 48, 72 or 96 h post-irradiation and aberrations were scored in first cycle metaphases using 24 color fluorescence in situ hybridization (mFISH). Additionally, in selected samples aberrations were measured in prematurely condensed G2-phase cells. Analysis of the time-course of aberrations in first cycle metaphases showed a stable yield of simple and complex exchanges after X-ray irradiation. In contrast, after C-ion exposure the yields profoundly increased with harvesting time complicating the estimation of the frequency of aberrations produced by high LET particles within the entire cell population. This is especially true for the yield of complex exchanges. Complex aberrations dominate the aberration spectrum produced by C-ions. Their fraction was about 50\% for the two measured doses. In contrast, isodoses of X-rays induced smaller proportions of complex aberrations (i.e. 5% and 15%, respectively). For both radiation qualities the fraction of complexes did not change with harvesting time. As expected from the different dose deposition of high and low LET radiation, complex exchanges produced by high LET C-ions involved more breaks and more chromosomes than those induced by isodoses of X-rays. Noteworthy, C-ions but not X-rays induced a small number of complex chromatid-isochromatid exchanges that are not expected for cells exposed in the G0-phase. The results obtained so far for cells arrested in G2-phase confirm these patterns. Altogether our data show that the increased effectiveness of C-ions for the induction of aberrations in first cycle cells is determined by complex exchanges, whereas for simple exchanges the relative biological effectiveness is about one.</p>

Radiat Res, 174(1), 20–26
July, 2010

Influence of nuclear geometry on the formation of genetic rearrangementsin human cells.

M. Durante, D. Pignalosa, J. A. Jansen, X. F. Walboomers, S. Ritter

Interphase chromosomes are divided into discrete domains, with limited overlapping and movement. We explored the role of nuclear topology in the formation of chromosome aberrations by irradiating normal human fibroblasts with high-energy heavy ions from different directions. Cells with elliptical nuclei were grown in an aligned manner onto micrometer grooved culturing substrates to have a predetermined orientation with respect to the accelerated iron ions. Particles were directed either perpendicular to the cell layer or along the major or minor axis of the nucleus. Analysis of chromosome aberrations by mFISH showed that, at the same radiation dose, the yield of chromosomal damage and its complexity are largely modified by the irradiation geometry. The results demonstrate that the architecture of the cell nucleus determines the formation of chromosomal rearrangements.

Cancer Genet Cytogenet, 200(2), 79–99
July, 2010

Transgenic oncogenes induce oncogene-independent cancers with individualkaryotypes and phenotypes.

Andreas Klein, Nan Li, Joshua M Nicholson, Amanda A McCormack, Adolf Graessmann, Peter Duesberg

Cancers are clones of autonomous cells defined by individual karyotypes, much like species. Despite such karyotypic evidence for causality, three to six synergistic mutations, termed oncogenes, are generally thought to cause cancer. To test single oncogenes, they are artificially activated with heterologous promoters and spliced into the germ line of mice to initiate cancers with collaborating spontaneous oncogenes. Because such cancers are studied as models for the treatment of natural cancers with related oncogenes, the following must be answered: 1) which oncogenes collaborate with the transgenes in cancers; 2) how do single transgenic oncogenes induce diverse cancers and hyperplasias; 3) what maintains cancers that lose initiating transgenes; 4) why are cancers aneuploid, over- and underexpressing thousands of normal genes? Here we try to answer these questions with the theory that carcinogenesis is a form of speciation. We postulate that transgenic oncogenes initiate carcinogenesis by inducing aneuploidy. Aneuploidy destabilizes the karyotype by unbalancing teams of mitosis genes. This instability thus catalyzes the evolution of new cancer species with individual karyotypes. Depending on their degree of aneuploidy, these cancers then evolve new subspecies. To test this theory, we have analyzed the karyotypes and phenotypes of mammary carcinomas of mice with transgenic SV40 tumor virus- and hepatitis B virus-derived oncogenes. We found that (1) a given transgene induced diverse carcinomas with individual karyotypes and phenotypes; (2) these karyotypes coevolved with newly acquired phenotypes such as drug resistance; (3) 8 of 12 carcinomas were transgene negative. Having found one-to-one correlations between individual karyotypes and phenotypes and consistent coevolutions of karyotypes and phenotypes, we conclude that carcinogenesis is a form of speciation and that individual karyotypes maintain cancers as they maintain species. Because activated oncogenes destabilize karyotypes and are dispensable in cancers, we conclude that they function indirectly, like carcinogens. Such oncogenes would thus not be valid models for the treatment of cancers.

Radiat Res, 174(1), 14–19
July, 2010

Inversions in chromosome 10 of human thyroid cells induced by acceleratedheavy ions.

D. Pignalosa, S. Ritter, M. Durante

Papillary thyroid carcinoma (PTC) is a known radiation-induced tumor. Rearrangements in human chromosome 10 and in particular intrachromosomal exchanges are often associated with PTC formation. In this study we measured intrachromosomal exchanges in human thyroid follicular cells exposed to sparsely or densely ionizing radiation. Assuming that inversions in chromosome 10 are a biomarker of PTC risk, we estimated the relative biological effectiveness (RBE) of heavy ions using a molecular marker in vitro. The analysis of chromosomal aberrations was performed with the mBAND technique, which allows detection of both inter- and intrachromosomal exchanges. Our results do not show any significant increase in the yield of intrachanges in samples exposed to heavy ions compared to X rays. Within the constraints imposed by the experimental model we used, we conclude that heavy ions would not necessarily be more effective than X rays in the induction of thyroid cancer.

Mutat Res, 699(1-2), 29–34
June, 2010

Frequency of chromosomal aberrations in Prague mothers and theirnewborns.

A. Rossnerova, I. Balascak, P. Rossner, R. J. Sram

The capital city of Prague is one of the most polluted areas of the Czech Republic. The impact of air pollution on the level of chromosomal aberrations was systematically studied: analyses were performed using fluorescence in situ hybridization (FISH) with whole-chromosome painting for chromosomes #1 and #4. In the present study, we analyzed the levels of stable (one-way and two-way translocations) and unstable (acentric fragments) chromosomal aberrations in 42 mothers living in Prague and in their newborns. The average age of the mothers was 29 years (range, 20-40 years). Blood samples were collected from October 2007 to February 2008. The average levels of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) and benzo[a]pyrene (B[a]P) in respirable particles (PM2.5), as determined by stationary monitoring, were 21.0+/-12.3ng/m(3) and 2.9+/-1.8ng/m(3), respectively. We did not observe any effect of either c-PAH or B[a]P exposure on the genomic frequency of translocations (per 100 cells, F(G)/100) in either group due to their similar exposure during the winter months. The mean values of F(G)/100 representing stable aberrations were 0.09+/-0.13 vs 0.80+/-0.79 (p

Mutat Res
April, 2010

Cytosine arabinoside, vinblastine, 5-fluorouracil and 2-aminoanthracenetesting in the in vitro micronucleus assay with L5178Y mouse lymphomacells at Sanofi Aventis, with different cytotoxicity measurements,in support of the draft OECD Test Guidel

Olivier Cariou, Nathalie Laroche-Prigent, Sandrine Ledieu, Isabelle Guizon, Françoise Paillard, Véronique Thybaud

Cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair), vinblastine (an aneugen that inhibits tubulin polymerisation), 5-fluorouracil (a nucleoside analogue with a steep response profile), and 2-aminoanthracene (a metabolism-dependent reference genotoxin) were tested in the in vitro micronucleus assay with L5178Y mouse lymphoma cells, without cytokinesis block. The four chemicals were independently evaluated in two Sanofi Aventis laboratories, one of which used an image analyser to score micronuclei, while the other scored micronucleated cells manually. Very similar results were obtained in the two laboratories, highlighting the robustness of the assay. The four test chemicals induced significant increases in the incidence of micronucleated cells at concentrations that produced no more than a 55+/-5\% reduction in survival growth, as measured with the three parameters recommended in the draft OECD Test Guideline on In Vitro Mammalian Cell Micronucleus Test (MNvit) for chemical testing, namely the relative increase in cell counts, relative population doubling, and the relative cell count. These results support the premise that the relative increase in cell counts and relative population doubling, that take into account both cell death and cytostasis, are appropriate measures of survival growth reduction in the in vitro micronucleus test conducted in the absence of cytokinesis block, as recommended in MNvit.

Mutat Res
March, 2010

mBAND analysis of chromosome aberrations in human epithelial cellsinduced by gamma-rays and secondary neutrons of low dose rate.

M. Hada, B. Gersey, P. B. Saganti, R. Wilkins, F. A. Cucinotta, H. Wu

Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17mGy/h or secondary neutrons of 25mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures.