Publications

Filter by Keyword

Filter by Application

Filter by Product/Solution


Cancer letters, 469, 355--366
January, 2020

PD-L1+ aneuploid circulating tumor endothelial cells (CTECs) exhibit resistance to the checkpoint blockade immunotherapy in advanced NSCLC patients.

Zhang, Lina, Zhang, Xinyong, Liu, Yanxia, Zhang, Tongmei, Wang, Ziyu, Gu, Meng, Li, Yilin, Wang, Daisy Dandan, Li, Weiying, Lin, Peter Ping

<p>Sustained angiogenesis and increased PD-L1 expression on endothelial and carcinoma cells contribute toward fostering an immunosuppressive microenvironment suitable for tumor growth. PD-L1 CTCs were reported to associate with poor prognosis in NSCLC patients. However, whether or not aneuploid circulating tumor endothelial cells (CTECs) express PD-L1, then serve as a surrogate biomarker to evaluate immunotherapy efficacy remains unknown. In this study, a novel SE-iFISH strategy was established to comprehensively quantify and characterize a full spectrum of aneuploid CTCs and CTECs in advanced NSCLC patients subjected to second-line anti-PD-1 (nivolumab) immunotherapy. In situ co-detection of diverse subtypes of aneuploid CTCs and CTECs expressing PD-L1 and Vimentin was performed. The present clinical study demonstrated that significant amounts of PD-L1 aneuploid CTCs and CTECs could be detected in histopathologic hPD-L1 patients. In contrast to decreased PD-L1 CTCs, the number of multiploid PD-L1 CTECs (≥tetrasomy 8) undergoing post-therapeutic karyotype shifting increased in patients along with tumor progression following anti-PD-1 treatment. Progressive disease (PD) lung cancer patients possessing multiploid PD-L1 CTECs had a significantly shorter PFS compared to those without PD-L1 CTECs. In carcinoma patients, aneuploid CTCs and CTECs may exhibit a functional interplay with respect to tumor angiogenesis, progression, metastasis, and response to immunotherapy.</p>

Digital object identifier (DOI): 10.1016/j.canlet.2019.10.041

Stem cell research, 42, 101679
January, 2020

Induced pluripotent stem cell line (PEIi003-A) derived from an apparently healthy male individual.

Fuchs, Nina V., Schieck, Maximilian, Neuenkirch, Michaela, Tondera, Christiane, Schmitz, Heike, Steinemann, Doris, Göhring, Gudrun, König, Renate

<p>Induced pluripotent stem cells (iPSCs) are a useful tool to investigate pathomechanistic and cellular processes due to their differentiation potential into different somatic cell types in vitro. Here, we have generated iPSCs from an apparently healthy male individual using an integration-free reprogramming method. The resulting iPSCs are pluripotent and display a normal karyotype. Furthermore, we demonstrate that this iPSC line can be differentiated into all three germ layers.</p>

Digital object identifier (DOI): 10.1016/j.scr.2019.101679

Biochemical and biophysical research communications, 511, 658–664
April, 2019

Distinctive Krebs cycle remodeling in iPSC-derived neural and mesenchymal stem cells.

Benlamara, Sarah, Aubry, Laetitia, Fabregue, Julien, Bénit, Paule, Rustin, Pierre, Rak, Malgorzata

<p>Mitochondria play a vital role in proliferation and differentiation and their remodeling in the course of differentiation is related to the variable energy and metabolic needs of the cell. In this work, we show a distinctive mitochondrial remodeling in human induced pluripotent stem cells differentiated into neural or mesenchymal progenitors. While leading to upregulation of the citrate synthase-α-ketoglutarate dehydrogenase segment of the Krebs cycle and increased respiratory chain activities and respiration in the mesenchymal stem cells, the remodeling in the neural stem cells resulted in downregulation of α-ketoglutarate dehydrogenase, upregulation of isocitrate dehydrogenase 2 and the accumulation of α-ketoglutarate. The distinct, lineage-specific changes indicate an involvement of these Krebs cycle enzymes in cell differentiation.</p>

Digital object identifier (DOI): 10.1016/j.bbrc.2019.02.033

Journal of cell science, 132
March, 2019

Synthetic lethality of cytolytic HSV-1 in cancer cells with ATRX and PML deficiency.

Han, Mingqi, Napier, Christine E, Frölich, Sonja, Teber, Erdahl, Wong, Ted, Noble, Jane R, Choi, Eugene H Y, Everett, Roger D, Cesare, Anthony J, Reddel, Roger R

<p>Cancers that utilize the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance are often difficult to treat and have a poor prognosis. They are also commonly deficient for expression of ATRX protein, a repressor of ALT activity, and a component of promyelocytic leukemia nuclear bodies (PML NBs) that are required for intrinsic immunity to various viruses. Here, we asked whether ATRX deficiency creates a vulnerability in ALT cancer cells that could be exploited for therapeutic purposes. We showed in a range of cell types that a mutant herpes simplex virus type 1 (HSV-1) lacking ICP0, a protein that degrades PML NB components including ATRX, was ten- to one thousand-fold more effective in infecting ATRX-deficient cells than wild-type ATRX-expressing cells. Infection of co-cultured primary and ATRX-deficient cancer cells revealed that mutant HSV-1 selectively killed ATRX-deficient cells. Sensitivity to mutant HSV-1 infection also correlated inversely with PML protein levels, and we showed that ATRX upregulates PML expression at both the transcriptional and post-transcriptional levels. These data provide a basis for predicting, based on ATRX or PML levels, which tumors will respond to a selective oncolytic herpesvirus.</p>

Digital object identifier (DOI): 10.1242/jcs.222349

Cell death & disease, 10, 186
February, 2019

Type 3 inositol 1,4,5-trisphosphate receptor has antiapoptotic and proliferative role in cancer cells.

Rezuchova, Ingeborg, Hudecova, Sona, Soltysova, Andrea, Matuskova, Miroslava, Durinikova, Erika, Chovancova, Barbora, Zuzcak, Michal, Cihova, Marina, Burikova, Monika, Penesova, Adela, Lencesova, Lubomira, Breza, Jan, Krizanova, Olga

Although the involvement of type 1 (IP R1) and type 2 (IP R2) inositol 1,4,5-trisphosphate receptors in apoptosis induction has been well documented in different cancer cells and tissues, the function of type 3 IP R (IP R3) is still elusive. Therefore, in this work we focused on the role of IP R3 in tumor cells in vitro and in vivo. We determined increased expression of this receptor in clear cell renal cell carcinoma compared to matched unaffected part of the kidney from the same patient. Thus, we hypothesized about different functions of IP R3 compared to IP R1 and IP R2 in tumor cells. Silencing of IP R1 prevented apoptosis induction in colorectal cancer DLD1 cells, ovarian cancer A2780 cells, and clear cell renal cell carcinoma RCC4 cells, compared to apoptosis in cells treated with scrambled siRNA. As expected, silencing of IP R3 and subsequent apoptosis induction resulted in increased levels of apoptosis in all these cells. Further, we prepared a DLD1/IP R3_del cell line using CRISPR/Cas9 gene editing method. These cells were injected into nude mice and tumor's volume was compared with tumors induced by DLD1 cells. Lower volume of tumors originated from DLD1/IP R3_del cells was observed after 12 days, compared to wild type DLD1 cells. Also, the migration of these cells was lesser compared to wild type DLD1 cells. Apoptosis under hypoxic conditions was more pronounced in DLD1/IP R3_del cells than in DLD1 cells. These results clearly show that IP R3 has proliferative and anti-apoptotic effect in tumor cells, on contrary to the pro-apoptotic effect of IP R1.

Digital object identifier (DOI): 10.1038/s41419-019-1433-4

Journal of applied genetics, 60, 63–70
February, 2019

Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours.

Vozdova, Miluse, Kubickova, Svatava, Cernohorska, Halina, Fröhlich, Jan, Fictum, Petr, Rubes, Jiri

Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.

Digital object identifier (DOI): 10.1007/s13353-018-0471-4

The journal of obstetrics and gynaecology research
January, 2019

Utility and performance of bacterial artificial chromosomes-on-beads assays in chromosome analysis of clinical prenatal samples, products of conception and blood samples.

Rose, Rajiv, Venkatesh, Aishwarya, Pietilä, Sanna, Jabeen, Gazala, Jagadeesh, Sujatha M, Seshadri, Suresh

<p>Chromosome analysis of prenatal samples and products of conception (POC) has conventionally been done by karyotyping (KT). Shortcomings of KT like high turnaround time and culture failure led to technology innovations, such as the bacterial artificial chromosomes (BAC)s-on-Beads (BoBs)-based tests, Prenatal BoBs (prenatal samples) and KaryoLite BoBs (POC samples). In the present study, we validated and evaluated the utility of each test on prenatal, POC and blood samples. Study A (n = 305; 259 prenatal + 46 blood/POC) and Study B (n = 176; 146 POC/chorionic vill + 30 blood/amniotic fluid) samples were analyzed using Prenatal and KaryoLite BoBs kits, respectively. KT, array-based Comparative Genomic Hybridization (arrayCGH) and fluorescence in situ hybridization (FISH) were used for comparison of results. Ability of KaryoLite BoBs to identify ring chromosomes was tested. Prenatal BoBs had zero test failure rate and results of all samples were concordant with KT results. Totally four microdeletions were identified by Prenatal BoBs but not by KT. In Study B, all but two POC samples (one triploid and one tetraploid) were concordant with KT and arrayCGH. Partial chromosomal imbalance detection rate was ~64% and KaryoLite BoBs indicated the presence of a ring chromosome in all four cases. The failure rate of KaryoLite BoBs was 3%. We conclude that Prenatal BoBs (common aneuploidies and nine microdeletions) together with KT constitutes more comprehensive prenatal testing compared to FISH and KT. KaryoLite BoBs for aneuploidies of all chromosomes is highly successful in POC analysis and the ability to indicate presence of ring chromosomes improves its clinical sensitivity. Both tests are robust and could also be used for different specimens.</p>

Digital object identifier (DOI): 10.1111/jog.13920

Cells, 8(7), 708
2019

X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells

De Vitis, M., Berardinelli, F., Coluzzi, E, Marinaccio, J.and O’Sullivan, R.J.and Sgura, A.

Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.

The FEBS journal, 285, 3769–3785
October, 2018

Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells.

Muoio, Daniela, Berardinelli, Francesco, Leone, Stefano, Coluzzi, Elisa, di Masi, Alessandra, Doria, Filippo, Freccero, Mauro, Sgura, Antonella, Folini, Marco, Antoccia, Antonio

In the present paper, the biological effects of three different naphthalene diimides (NDIs) G-quadruplex (G4) ligands (H-NDI-Tyr, H-NDI-NMe2, and tetra-NDI-NMe2) were comparatively evaluated to those exerted by RHPS4, a well-characterized telomeric G4-ligand, in an in vitro model of glioblastoma. Data indicated that NDIs were very effective in blocking cell proliferation at nanomolar concentrations, although displaying a lower specificity for telomere targeting compared to RHPS4. In addition, differently from RHPS4, NDIs failed to enhance the effect of ionizing radiation, thus suggesting that additional targets other than telomeres could be involved in the strong NDI-mediated anti-proliferative effects. In order to test telomeric off-target action of NDIs, a panel of genes involved in tumor progression, DNA repair, telomere maintenance, and cell-cycle regulation were evaluated at transcriptional and translational level. Specifically, the compounds were able to cause a marked reduction of TERT and BCL2 amounts as well as to favor the accumulation of proteins involved in cell cycle control. A detailed cytofluorimetric analysis of cell cycle progression by means of bromodeoxyuridine (BrdU) incorporation and staining of phospho-histone H3 indicated that NDIs greatly reduce the progression through S-phase and lead to G1 accumulation of BrdU-positive cells. Taken together, these data indicated that, besides effects on telomeres and oncogenes such as Tert and Bcl2, nanomolar concentrations of NDIs determined a sustained block of cell proliferation by slowing down cell cycle progression during S-phase. In conclusion, our data indicate that NDIs G4-ligands are powerful antiproliferative agents, which act through mechanisms that ultimately lead to altered cell-cycle control.

Digital object identifier (DOI): 10.1111/febs.14628

Cancers, 10
October, 2018

Establishment and Characterization of a Reliable Xenograft Model of Hodgkin Lymphoma Suitable for the Study of Tumor Origin and the Design of New Therapies.

M'kacher, Radhia, Frenzel, Monika, Al Jawhari, Mustafa, Junker, Steffen, Cuceu, Corina, Morat, Luc, Bauchet, Anne-Laure, Stimmer, Lev, Lenain, Aude, Dechamps, Nathalie, Hempel, William M, Pottier, Geraldine, Heidingsfelder, Leonhard, Laplagne, Eric, Borie, Claire, Oudrhiri, Noufissa, Jouni, Dima, Bennaceur-Griscelli, Annelise, Colicchio, Bruno, Dieterlen, Alain, Girinsky, Theodore, Boisgard, Raphael, Bourhis, Jean, Bosq, Jacques, Mehrling, Thomas, Jeandidier, Eric, Carde, Patrice

<p>To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30-/CD15- cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (-/-)(NSG) mice. Using cell sorting, we demonstrate that CD30-/CD15- subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30-/CD15- cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Our HL animal model requires only 10³ cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30-/CD15- cells exhibiting high telomerase activity and telomere dysfunction.</p>

Digital object identifier (DOI): 10.3390/cancers10110414

Oncogenesis, 7, 62
August, 2018

Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects.

He, Qianqian, Au, Bijin, Kulkarni, Madhura, Shen, Yang, Lim, Kah J, Maimaiti, Jiamila, Wong, Cheng Kit, Luijten, Monique N H, Chong, Han C, Lim, Elaine H, Rancati, Giulia, Sinha, Indrajit, Fu, Zhiyan, Wang, Xiaomeng, Connolly, John E, Crasta, Karen C

Chromosomal instability (CIN), a high rate of chromosome loss or gain, is often associated with poor prognosis and drug resistance in cancers. Aneuploid, including near-polyploid, cells contain an abnormal number of chromosomes and exhibit CIN. The post-mitotic cell fates following generation of different degrees of chromosome mis-segregation and aneuploidy are unclear. Here we used aneuploidy inducers, nocodazole and reversine, to create different levels of aneuploidy. A higher extent of aneuploid and near-polyploid cells in a given population led to senescence. This was in contrast to cells with relatively lower levels of abnormal ploidy that continued to proliferate. Our findings revealed that senescence was accompanied by DNA damage and robust p53 activation. These senescent cells acquired the senescence-associated secretory phenotype (SASP). Depletion of p53 reduced the number of senescent cells with concomitant increase in cells undergoing DNA replication. Characterisation of these SASP factors demonstrated that they conferred paracrine pro-tumourigenic effects such as invasion, migration and angiogenesis both in vitro and in vivo. Finally, a correlation between increased aneuploidy and senescence was observed at the invasive front in breast carcinomas. Our findings demonstrate functional non-equivalence of discernable aneuploidies on tumourigenesis and suggest a cell non-autonomous mechanism by which aneuploidy-induced senescent cells and SASP can affect the tumour microenvironment to promote tumour progression.

Digital object identifier (DOI): 10.1038/s41389-018-0072-4

Cancers, 10
July, 2018

Independent Mechanisms Lead to Genomic Instability in Hodgkin Lymphoma: Microsatellite or Chromosomal Instability.

Cuceu, Corina, Colicchio, Bruno, Jeandidier, Eric, Junker, Steffen, Plassa, François Plassa, Shim, Grace, Mika, Justyna, Frenzel, Monika, Al Jawhari, Mustafa, Hempel, William M, O'Brien, Grainne, Lenain, Aude, Morat, Luc, Girinsky, Theodore, Dieterlen, Alain, Polanska, Joanna, Badie, Christophe, Carde, Patrice, M'Kacher, Radhia

<p>Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.</p>

Digital object identifier (DOI): 10.3390/cancers10070233

Cytometry. Part A : the journal of the International Society for Analytical Cytology, 93, 653--661
June, 2018

Immense random colocalization, revealed by automated high content image cytometry, seriously questions FISH as gold standard for detecting EML4-ALK fusion.

Smuk, Gábor, Tornóczky, Tamás, Pajor, László, Chudoba, Ilse, Kajtár, Béla, Sárosi, Veronika, Pajor, Gábor

<p>EML4-ALK gene fusion (inv2(p21p23)) of non-small cell lung cancer (NSCLC) predisposes to tyrosine kinase inhibitor treatment. One of the gold standard diagnostics is the dual color (DC) break-apart (BA) FISH technique, however, the unusual closeness of the involved genes has been suggested to raise likelihood of random co-localization (RCL) of signals. Although this is suspected to decrease sensitivity (often to as low as 40-70%), the exact level and effect of RCL has not been revealed thus far. Signal distances were analyzed to the 0.1 µm precision in more than 25,000 nuclei, via automated high content-image cytometry. Negative and positive controls were created using conventional DC BA-, and inv2(p21p23) mimicking probe-sets, respectively. Average distance between red and green signals was 9.72 pixels (px) (±5.14px) and 3.28px (±2.44px), in positives and negatives, respectively; overlap in distribution being 41%. Specificity and sensitivity of correctly determining ALK status was 97% and 29%, respectively. When investigating inv2(p21p23) with DC BA FISH, specificity is high, but seven out of ten aberrant nuclei are inevitably falsely classified as negative, due to the extreme level of RCL. Together with genetic heterogeneity and dilution effect of non-tumor cells in NSCLC, this immense analytical false negativity is the primary cause behind the often described low diagnostic sensitivity. These results convincingly suggest that if FISH is to remain a gold standard for detecting the therapy relevant inv(2), either a modified evaluation protocol, or a more reliable probe-design should be considered than the current DC BA one.</p>

Digital object identifier (DOI): 10.1002/cyto.a.23489

Cancers, 10, e0193213
May, 2018

The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes.

M'kacher, Radhia, Cuceu, Corina, Al Jawhari, Mustafa, Morat, Luc, Frenzel, Monika, Shim, Grace, Lenain, Aude, Hempel, William M, Junker, Steffen, Girinsky, Theodore, Colicchio, Bruno, Dieterlen, Alain, Heidingsfelder, Leonhard, Borie, Claire, Oudrhiri, Noufissa, Bennaceur-Griscelli, Annelise, Moralès, Olivier, Renaud, Sarah, Van de Wyngaert, Zoé, Jeandidier, Eric, Delhem, Nadira, Carde, Patrice

<p>We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30-/CD15- cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival ( &lt; 10 ), event-free survival ( &lt; 10 ), and freedom from progression ( &lt; 10 ) and the presence of an ALT profile in lymph nodes of EBV+ patients. The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.</p>

Digital object identifier (DOI): 10.3390/cancers10060169

eLife, 7, 3122
May, 2018

Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

Sun, Jiying, Shi, Lin, Kinomura, Aiko, Fukuto, Atsuhiko, Horikoshi, Yasunori, Oma, Yukako, Harata, Masahiko, Ikura, Masae, Ikura, Tsuyoshi, Kanaar, Roland, Tashiro, Satoshi

Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities.

Digital object identifier (DOI): 10.7554/eLife.32222

Cancer genomics & proteomics, 15, 91–114
March, 2018

Characterization of Camptothecin-induced Genomic Changes in the Camptothecin-resistant T-ALL-derived Cell Line CPT-K5.

Kjeldsen, Eigil, Nielsen, Christine J F, Roy, Amit, Tesauro, Cinzia, Jakobsen, Ann-Katrine, Stougaard, Magnus, Knudsen, Birgitta R

Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations and a reduced modal chromosomal number compared to RPMI-8402. soaCGH analysis identified vast copy number alterations and >200 unbalanced DNA breakpoints distributed unevenly across the chromosomal complement in CPT-K5. In addition, the short tandem repeat alleles were found to be highly different between CPT-K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.

Digital object identifier (DOI): 10.21873/cgp.20068

Investigative ophthalmology & visual science, 59, 561–571
January, 2018

A Novel C-Terminal Mutation in Gsdma3 (C+/H-) Leads to Alopecia and Corneal Inflammatory Response in Mice.

Swirski, Sebastian, Röger, Carsten, Pienkowska-Schelling, Aldona, Ihlenburg, Cynthia, Fischer, Gösta, May, Oliver, Vorm, Mariann, Owczarek-Lipska, Marta, Neidhardt, John

<p>Mutations in the gene encoding Gasdermin A3 (Gsdma3) have been described to cause severe skin phenotypes, including loss of sebaceous glands and alopecia, in mice. We discovered a novel C-terminal mutation in Gsdma3 in a new mouse line and characterized a less frequently reported corneal phenotype, likely caused by degeneration of Meibomian glands of the inner eyelid. We used histologic methods to evaluate the effects of the C+/H- mutation on sebaceous gland and skin morphology as well as Meibomian glands of the inner eyelid and corneal tissue. Chromosomal aberrations were excluded by karyogram analyses. The mutation was identified by Sanger sequencing of candidate genes. Analyses of skin samples from affected mice confirmed the frequently reported phenotypes associated with mutations in Gsdma3: Degeneration of sebaceous glands and complete loss of pelage. Immunologic staining of corneal samples suggested an inflammatory response with signs of neovascularization in half of the affected older mice. While the corneal phenotype was observed at irregular time points, mainly after 6 months, its appearance coincided with a degeneration of Meibomian glands in the eyelids of affected animals. The mutation described herein is associated with inflammation and neovascularization of corneal tissue. Simultaneous degeneration of Meibomian glands in affected animals suggested a change in tear-film composition as the underlying cause for the corneal phenotype. Our data further support that different pathogenic mechanisms underlie some of the reported mutations in Gsdma3.</p>

Digital object identifier (DOI): 10.1167/iovs.17-22658

Journal of Alzheimer's disease : JAD, 61, 899–905
2018

A Novel Antibody Targeting Tau Phosphorylated at Serine 235 Detects Neurofibrillary Tangles.

Brici, David, Götz, Jürgen, Nisbet, Rebecca M

<p>Alzheimer's disease is characterized by two main pathological hallmarks in the human brain: the extracellular deposition of amyloid-β as plaques and the intracellular accumulation of the hyperphosphorylated protein tau as neurofibrillary tangles (NFTs). Phosphorylated tau (p-tau) specific-antibodies and silver staining have been used to reveal three morphological stages of NFT formation: pre-NFTs, intraneuronal NFTs (iNFTs), and extraneuronal NFTs (eNFTs). Here we characterize a novel monoclonal antibody, RN235, which is specific for tau phosphorylated at serine 235, and detects iNFTs and eNFTs in brain tissue, suggesting that phosphorylation at this site is indicative of late stage changes in tau.</p>

Digital object identifier (DOI): 10.3233/JAD-170610

British journal of cancer
2018

Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study.

Berbegall, Ana P, Bogen, Dominik, Pötschger, Ulrike, Beiske, Klaus, Bown, Nick, Combaret, Valérie, Defferrari, Raffaella, Jeison, Marta, Mazzocco, Katia, Varesio, Luigi, Vicha, Ales, Ash, Shifra, Castel, Victoria, Coze, Carole, Ladenstein, Ruth, Owens, Cormac, Papadakis, Vassilios, Ruud, Ellen, Amann, Gabriele, Sementa, Angela R, Navarro, Samuel, Ambros, Peter F, Noguera, Rosa, Ambros, Inge M

<p>In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues. The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH. Patients &lt;18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: &lt;18 m: 0.95 ± 0.04, &gt;18 m: 0.67 ± 0.14, <em>p</em> = 0.011; metastatic: &lt;18 m: 0.76 ± 0.15, &gt;18 m: 0.28 ± 0.09, <em>p</em> = 0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse. This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.</p>

Digital object identifier (DOI): 10.1038/s41416-018-0098-6

Diagnostics (Basel, Switzerland), 8
2018

Aneuploid CTC and CEC.

Lin, Peter Ping

<p>Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (&gt; white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A (<em>CDKN2A</em>) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.</p>

Digital object identifier (DOI): 10.3390/diagnostics8020026