Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution


Cancer Research, 55, 1334- 1338
1995

Gains and losses of DNA sequences in osteosarcomas by comparative genomic hybridization

M. Tarkkanen, R. Karhu, A. Kallioniemi, I. Elomaa, A.H. Kivioja, J. Nevalainen, T. Böhling, E. Karaharju, E. Hyytinen, S. Knuutila, O.P. Kallioniemi

Our aim was to identify chromosomal regions that are likely to harbor previously unknown genes with an important role in the genesis of osteosarcoma. Comparative genomic hybridization was used to screen for losses and gains of DNA sequences along all chromosome arms in 11 tumors. Extensive genetic aberrations, with an average of 11 changes/tumor (range, 1-20), were found in 10 of the 11 specimens. High level amplifications of small chromosomal regions were detected in eight tumors. These involved the 12q12-q13 region (known to contain the SAS-MDM2 locus) and several previously unreported amplification sites such as 17p11-p12, 3q26, and Xq12. When all DNA sequence gains were evaluated, the gains at 8q and Xp were most common (45%). The most common losses of DNA sequences were seen at 2q, 6q, 8p, and 10p (36%). In conclusion, despite the very complex pattern of genetic changes in osteosarcomas, certain chromosomal regions appear to be affected more often than others. Most of these regions have not previously been reported to be implicated in osteosarcomas and may thus highlight locations of novel genes with an important role in the development and progression of these tumors.