Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution

Filtering by 'micronuclei' and Comet Assay

Remove All Filters

Mutagenesis
April, 2015

Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ-irradiated mice

Arun Kumar, Tamizh G. Selvan, Akanchha M. Tripathi, Sandeep Choudhary, Shahanshah Khan, Jawahar S. Adhikari, Nabo K. Chaudhury

<p>Ionising radiation causes free radical-mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57 % and 50 %, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only (P &lt; 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice.</p>

Int J Radiat Biol, 90(2), 149–158
February, 2014

Induction and disappearance of gammaH2AX foci and formation of micronuclei after exposure of human lymphocytes to (60)Co gamma-rays and p(66)+ Be(40) neutrons.

Veerle Vandersickel, Philip Beukes, Bram Van Bockstaele, Julie Depuydt, Anne Vral, Jacobus Slabbert

<p>To investigate both the formation of micronuclei (MN) and the induction and subsequent loss of phosphorylated histone H2AX foci (gammaH2AX foci) after in vitro exposure of human lymphocytes to either (60)Co gamma-rays or p(66)+ Be(40) neutrons.MN dose response (DR) curves were obtained by exposing isolated lymphocytes of 10 different donors to doses ranging from 0-4 Gy gamma-rays or 0-2 Gy neutrons. Also, gammaH2AX foci DR curves were obtained following exposure to doses ranging from 0-0.5 Gy of either gamma-rays or neutrons. Foci kinetics for lymphocytes for a single donor exposed to 0.5 Gy gamma-rays or neutrons were studied up to 24 hours post-irradiation.Micronuclei yields following neutron exposure were consistently higher compared to that from (60)Co gamma-rays. All MN yields were over-dispersed compared to a Poisson distribution. Over-dispersion was higher after neutron irradiation for all doses &gt; 0.1 Gy. Up to 4 hours post-irradiation lower yields of neutron-induced gammaH2AX foci were observed. Between 4 and 24 hours the numbers of foci from neutrons were consistently higher than that from gamma-rays. The half-live of foci disappearance is only marginally longer for neutrons compared to that from gamma-rays. Foci formations were more likely to be over-dispersed for neutron irradiations.Although neutrons are more effective to induce MN, the absolute number of induced gammaH2AX foci are less at first compared to gamma-rays. With time neutron-induced foci are more persistent. These findings are helpful for using gammaH2AX foci in biodosimetry and to understand the repair of neutron-induced cellular damage.</p>

Toxicol Sci
July, 2013

Genotoxicity Profile of Azidothymidine In Vitro.

Andreas Zeller, Julie Koenig, Georg Schmitt, Thomas Singer, Melanie Guérard

Azidothymidine (Zidovudine, AZT) is part of the standard care of treatment for acquired immunodeficiency syndrome since many years. A great number of studies on the genotoxic potential of AZT have been published, but no comprehensive hypothesis yet explains all observations. We investigated a multitude of genotoxic endpoints, both in vitro and in vivo, with the goal to complete the picture. The mutagenic potential of AZT in bacteria was found to be restricted to strains with an #ochre# target sequence and could be abrogated both by thymidine supplementation and rat liver S9 mix. Single-strand breaks in mammalian cells were detected in the comet assay after short-term treatment (3h) with AZT, which did not induce micronuclei. The latter were mainly seen after prolonged exposure (24 and 48h) and are probably not directly related to AZT incorporation into DNA. Our data demonstrate that short-term exposure to low AZT concentrations does not induce biologically relevant micronucleation. Only treatment with high concentrations of AZT for prolonged time periods manifests in substantial micronucleus induction. Furthermore, we found that high concentrations of thymidine have no effect in the comet assay but increase micronucleus frequency in a manner very similar to AZT. These results lead us to the following hypothesis: AZT is triphosphorylated and then incorporated into DNA strands, leading to mutations and cytotoxicity. Cellular attempts to repair these DNA lesions as well as stalled replication forks due to chain termination are detectable with the comet assay. Increased micronucleus frequency is likely related to nucleotide pool imbalance.

Nucleic Acids Research, 33, 2512- 2520
2005

XRCC1 is required for DNA single-strand break repair in human cells.

R. Brem, J. Hall

The X-ray repair cross complementing 1 (XRCC1) protein is required for viability and efficient repair of DNA single-strand breaks (SSBs) in rodents. XRCC1-deficient mouse or hamster cells are hypersensitive to DNA damaging agents generating SSBs and display genetic instability after such DNA damage. The presence of certain polymorphisms in the human XRCC1 gene has been associated with altered cancer risk, but the role of XRCC1 in SSB repair (SSBR) in human cells is poorly defined. To elucidate this role, we used RNA interference to modulate XRCC1 protein levels in human cell lines. A reduction in XRCC1 protein levels resulted in decreased SSBR capacity as measured by the comet assay and intracellular NAD(P)H levels, hypersensitivity to the cell killing effects of the DNA damaging agents methyl methanesulfonate (MMS), hydrogen peroxide and ionizing radiation and enhanced formation of micronuclei following exposure to MMS. Lowered XRCC1 protein levels were also associated with a significant delay in S-phase progression after exposure to MMS. These data clearly demonstrate that XRCC1 is required for efficient SSBR and genomic stability in human cells.

Cytogenet Genome Res, 104, 383- 389
2004

New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell electrophoresis, and fluorescence signals.

C. Schunck, T. Johannes, D. Varga, T. Lörch, A. Plesch

The quantification of DNA damage, both in vivo and in vitro, can be very time consuming, since large amounts of samples need to be scored. Additional uncertainties may arise due to the lack of documentation or by scoring biases. Image analysis automation is a possible strategy to cope with these difficulties and to generate a new quality of reproducibility. In this communication we collected some recent results obtained with the automated scanning platform Metafer, covering applications that are being used in radiation research, biological dosimetry, DNA repair research and environmental mutagenesis studies. We can show that the automated scoring for dicentric chromosomes, for micronuclei, and for Comet assay cells produce reliable and reproducible results, which prove the usability of automated scanning in the above mentioned research fields.