Publications

We maintain this section to inform interested users about independent scientific studies conducted on MetaSystems products. We assume no responsibility or liability regarding the accuracy or correct use of the information or statements provided by external authors. The conclusions or statements expressed in the publications listed are those of the external authors or researchers. The publications may involve user-specific adaptations of MetaSystems products. They are not intended for diagnostic use. For publications covered by the Intended Purpose of Metafer or Ikaros, please refer to the respective instructions for use (IFU).

Filter by Keyword

Filter by Product/Solution


Genes Chromosomes Cancer, 35, 204- 218
2002

Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene

C. Popovici, C. Basset, F. Bertucci, B. Orsetti, J. Adélaide, M.-J. Mozziconacci, N. Conte, A. Murati, C. Ginestier, E. Charafe-Jauffret, S.P. Ethier, M. Lafage-Pochitalof, C. Theillet, D. Birnbaum, M. Chaffanet

All molecular alterations that lead to breast cancer are not precisely known. We are evaluating the frequency and consequences of reciprocal translocations in breast cancer. We surveyed 15 mammary cell lines by multicolor fluorescence in situ hybridization (M-FISH). We identified nine apparently reciprocal translocations. Using mBanding FISH and FISH with selected YAC clones, we identified the breakpoints for four of them, and cloned the t(3;20)(p14;p11) found in the BrCa-MZ-02 cell line. We found that the breakpoint targets the potential tumor-suppressor gene FHIT (fragile histidine triad) in the FRA3B region; it is accompanied by homozygous deletion of exon 5 of the gene and absence of functional FHIT and fusion transcripts, which leads to the loss of FHIT protein expression. Additional experiments using comparative genomic hybridization provided further information on the genomic context in which the t(3;20)(p14;p11) reciprocal translocation was found.

Am J Hum Genet, 71, 1051- 1059
2002

The DNA-based structure of human chromosome 5 in interphase

J. Lemke, J. Claussen, S. Michel, I. Chudoba, P. Mühlig, M. Westermann, K. Sperling, N. Rúbtsov, U.-W. Grummt, P. Ullmann, K. Kromeyer-Hauschil, T. Liehr, U. Claussen

In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region–specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5–specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.

Cancer Genet. Cytogenet., 138, 153- 156
2002

Cryptic t(X;18), ins(6;18), and SYT-SSX2 gene fusion in a case of intraneural monophasic synovial sarcoma

V.S. Lestou, J.X. O'Connell, M. Robichaud, C. Salski, J. Mathers, J. Maguire, I. Chudoba, P.H.B. Sorensen, W. Lam, D.E. Horsman

A 54-year-old male presented with a spontaneous peroneal nerve palsy and a diagnosis of monophasic synovial sarcoma (SS) was rendered by histologic examination. Cytogenetic analysis revealed a complex abnormal karyotype without evidence of the typical t(X;18)(p11;q11) associated with SS. Subsequent reverse transcriptase polymerase chain reaction analysis showed the presence of an SYT/SSX2 fusion transcript, confirming the presence of a cyptic t(X;18). In light of -X, -18 and marker chromosomes evident in the G-band karyotype, it was suspected that a cryptic chromosomal rearrangement involving the marker chromosomes would harbor an X;18 fusion. Multi-colored karytotyping (M-FISH) revealed a previously unrecognized t(X;18) and t(5;19) in the marker chromosomes as well as unrecognized ins(6;18) and t(16;20). The addition of M-FISH analysis in this case led to the identification of complex inter-chromosomal rearrangements, thus providing an accurate karyotype.

Cytogenet. Cell Genet., 93, 242- 248
2001

Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB)

K. Mrasek, A. Heller, N. Rubtsov, V. Trifonov, H. Starke, M. Rocchi, U. Claussen, T. Liehr

<p>The origin of the human and great ape chromosomes has been studied by comparative chromosome banding analysis and, more recently, by fluorescence in situ hybridization (FISH), using human whole-chromosome painting probes. It is not always possible, however, to determine the exact breakpoints and distribution or orientation of specific DNA regions using these techniques. To overcome this problem, the recently developed multicolor banding (MCB) probe set for all human chromosomes was applied in the present study to reanalyze the chromosomes of Gorilla gorilla (GGO). While the results agree with those of most previous banding and FISH studies, the breakpoints for the pericentric inversion on GGO 3 were defined more precisely. Moreover, no paracentric inversion was found on GGO 14, and no pericentric inversions could be demonstrated on GGO 16 or 17.</p>

Hum Genet, 108, 478- 483
2001

Improved definition of chromosomal breakpoints using high-resolution multicolour banding

J. Lemke, I. Chudoba, G. Senger, M. Stumm, I.F. Loncarevic, C. Henry, B. Zabel, U. Claussen

<p>Characterisation of chromosome rearrangements using conventional banding techniques often fails to determine the localisation of breakpoints precisely. In order to improve the definition of chromosomal breakpoints, the high-resolution multicolour banding (MCB) technique was applied to identify human chromosome 5 breakpoints from 40 clinical cases previously assessed by conventional banding techniques. In 30 cases (75%), at least one breakpoint was redefined, indicating that MCB markedly improves chromosomal breakpoint localisation. The MCB pattern is highly reproducible and, in contrast to conventional banding pattern, is consistent in both short and elongated chromosomes. This might be of fundamental interest for the detection of chromosomal abnormalities, especially in tumour cells. Moreover, MCB even allows the detection of abnormalities that remain cryptic in GTG-banding analysis.</p>

Genes, Chromosomes & Cancer, 30, 274- 282
2001

Molecular cytogenetic and clinical findings in ETV6/ABL1-positive leukemia

H. Van Limbergen, H.B. Beverloo, van Drunen, E., A. Janssens, K. Hählen, B. Poppe, N. Van Roy, P. Marynen, de Paepe, A., R. Slater, F. Speleman

Rearrangements of 12p, resulting from deletions or translocations, are common findings in hematologic malignancies. In many cases, these rearrangements target the ETV6 gene (previously called TEL) located at 12p13. Various partner genes have been implicated in the formation of fusion genes with ETV6. These include PDGFRB, JAK2, NTRK3, ABL2, and ABL1, each of which encodes for proteins with tyrosine kinase activity. To date, ETV6/ABL1 transcripts have been detected in only four patients with a leukemic disorder. Here, we describe one adult with chronic myeloid leukemia and a child with T-cell acute lymphocytic leukemia with ETV6/ABL1. Molecular cytogenetic analysis confirmed that formation of an ETV6/ABL1 fusion in these patients required at least three chromosomal breaks and showed that each of these translocations is the result of a complex chromosomal rearrangement. Molecular analysis showed the presence of two fusion transcripts in both patients as the result of alternative splicing, questioning the suggested role of these transcripts in the lineage specificity. Clinical findings of these patients were compared to those of previously reported cases, and the possible clinical and biological similarities between ETV6/ABL1 and other fusion genes leading to increased tyrosine kinase activity are discussed.