Int J Mol Med, 16, 463- 469
2005

Studies on the action of mitomycin C and bleomycin on telomere lengths of human lymphocyte chromosomes.

U. Wick, E. Gebhart

In order to address the problem of the action of cytostatics on chromosome ends, telomere length was measured in human lymphocyte cultures exposed to mitomycin C (MMC) and bleomycin (BLM). Telomere-specific PNA probes were used for the quantitative estimation of the relative telomere length of each individual chromosome by fluorescence in situ hybridization. A high inter-cellular and inter-individual variability of relative telomere lengths was found throughout all experiments. Different responses could be observed with respect to the action of the examined mutagens: The total average fluorescence intensity of labeled telomere repeats was decreased under the action of MMC in two of the experiments, while two revealed no significant alteration. BLM caused no significant change of total average telomeric signal intensity in four, a clear decrease in one of the six experiments, and an increase in another. Although all chromosome ends contributed to the observed trends, single telomeres were affected in a very distinct way. The highest concentration of MMC (1 microg/ml) induced significant shortening of telomeres of the chromosome arms; 2q, 3p, 5q, 7p, 10q, 11p, 13q, 17p, 18p&q, and 21q in two independent experiments. In one BLM experiment with 8 microg/ml, the most distinct decrease (p< or =0.005) of telomeric fluorescence was found at the ends of chromosome arms; 1q, 6p, 17p, 20p&q, and 22q. The increase of telomeric signal intensity affected the telomeres of some individual chromosome arms more than others, e.g. 4q, 6p, 7p, 8p, 13p, and 18q. Although the telomere length of the individual chromosome arms varied widely, clear trends could be observed with respect to the rank which was occupied by telomeric length of the various chromosome arms. The telomeres of the 1p, 3p, 4q, 5p, 12q, and 13q chromosome arms throughout all experiments were among the longest; and those of 13p, 15p, 21p, and 22p were among the shortest telomeres of the karyotype. From these data, it can be concluded that MMC affects the telomeric repeat area of chromosomes more than BLM, which mostly had no significant effect on telomere length in the performed experiments.

All Publications