Sex-specific telomere length profiles and age-dependent erosion dynamics of individual chromosome arms in humans.
During aging, telomeres are gradually shortened, eventually leading to cellular senescence. By T/C-FISH (telomere/centromere-FISH), we investigated human telomere length differences on single chromosome arms of 205 individuals in different age groups and sexes. For all chromosome arms, we found a linear correlation between telomere length and donor age. Generally, males had shorter telomeres and higher attrition rates. Every chromosome arm had its individual age-specific telomere length and erosion pattern, resulting in an unexpected heterogeneity in chromosome-specific regression lines. This differential erosion pattern, however, does not seem to be accidental, since we found a correlation between average telomere length of single chromosome arms in newborns and their annual attrition rate. Apart from the above-mentioned sex-specific discrepancies, chromosome arm-specific telomere lengths were strikingly similar in men and women. This implies a mechanism that arm specifically regulates the telomere length independent of gender, thus leading to interchromosomal telomere variations.