Radiation Measurements, 46(2), 169 - 175
2011

Micronucleus test for radiation biodosimetry in mass casualty events: Evaluation of visual and automated scoring

Claudia Bolognesi, Cristina Balia, Paola Roggieri, Francesco Cardinale, Paolo Bruzzi, Francesca Sorcinelli, Florigio Lista, Raffaele D'Amelio, Enzo Righi

<p>In the case of a large-scale nuclear or radiological incidents a reliable estimate of dose is an essential tool for providing timely assessment of radiation exposure and for making life-saving medical decisions. Cytogenetics is considered as the #gold##standard# for biodosimetry. The dicentric analysis (DA) represents the most specific cytogenetic bioassay. The micronucleus test (MN) applied in interphase in peripheral lymphocytes is an alternative and simpler approach. A dose-effect calibration curve for the MN frequency in peripheral lymphocytes from 27 adult donors was established after in vitro irradiation at a dose range 0.15-8 Gy of 137Cs gamma rays (dose rate 6 Gy min-1). Dose prediction by visual scoring in a dose-blinded study (0.15-4.0 Gy) revealed a high level of accuracy (R = 0.89). The scoring of MN is time consuming and requires adequate skills and expertise. Automated image analysis is a feasible approach allowing to reduce the time and to increase the accuracy of the dose estimation decreasing the variability due to subjective evaluation. A good correlation (R = 0.705) between visual and automated scoring with visual correction was observed over the dose range 0-2 Gy. Almost perfect discrimination power for exposure to 1-2 Gy, and a satisfactory power for 0.6 Gy were detected. This threshold level can be considered sufficient for identification of sub lethally exposed individuals by automated CBMN assay.</p>

All Publications