Publications

Filtrer par mots-clé

Filtrer par application

Filtrer par produit/solution


TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 131, 389--406
2018

Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat.

Grewal, Surbhi, Yang, Caiyun, Edwards, Stella Hubbart, Scholefield, Duncan, Ashling, Stephen, Burridge, Amanda J, King, Ian P, King, Julie

Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat-Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat-Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat-Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (J J J J StSt) and Thinopyrum elongatum (E E ), respectively.

Digital object identifier (DOI): 10.1007/s00122-017-3009-y

Journal of neurotrauma, 35, 671--680
2018

Erythropoietin Attenuates the Brain Edema Response after Experimental Traumatic Brain Injury.

Blixt, Jonas, Gunnarson, Eli, Wanecek, Michael

Erythropoietin (EPO) has neuroprotective effects in multiple central nervous system (CNS) injury models; however EPO's effects on traumatic brain edema are elusive. To explore EPO as an intervention in traumatic brain edema, male Sprague-Dawley (SD) rats were subjected to blunt, controlled traumatic brain injury (TBI). Animals were randomized to EPO 5000 IU/kg or saline (control group) intraperitoneally within 30 min after trauma and once daily for 4 consecutive days. Brain MRI, immunohistofluorescence, immunohistochemistry, and quantitative protein analysis were performed at days 1 and 4 post- trauma. EPO significantly prevented the loss of the tight junction protein zona occludens 1 (ZO-1) observed in control animals after trauma. The decrease of ZO-1 in the control group was associated with an immunoglobulin (Ig)G increase in the perilesional parenchyma, indicating blood-brain barrier (BBB) dysfunction and increased permeability. EPO treatment attenuated decrease in apparent diffusion coefficient (ADC) after trauma, suggesting a reduction of cytotoxic edema, and reduced the IgG leakage, indicating that EPO contributed to preserve BBB integrity and attenuated vasogenic edema. Animals treated with EPO demonstrated conserved levels of aquaporin 4 (AQP4) protein expression in the perilesional area, whereas control animals showed a reduction of AQP4. We show that post TBI administration of EPO decreases early cytotoxic brain edema and preserves structural and functional properties of the BBB, leading to attenuation of the vasogenic edema response. The data support that the mechanisms involve preservation of the tight junction protein ZO-1 and the water channel AQP4, and indicate that treatment with EPO may have beneficial effects on the brain edema response following TBI.

Digital object identifier (DOI): 10.1089/neu.2017.5015

Angiogenesis
2018

Improved recovery from limb ischaemia by delivery of an affinity-isolated heparan sulphate.

Poon, Selina, Lu, Xiaohua, Smith, Raymond A A, Ho, Pei, Bhakoo, Kishore, Nurcombe, Victor, Cool, Simon M

Peripheral arterial disease is a major cause of limb loss and its prevalence is increasing worldwide. As most standard-of-care therapies yield only unsatisfactory outcomes, more options are needed. Recent cell- and molecular-based therapies that have aimed to modulate vascular endothelial growth factor-165 (VEGF ) levels have not yet been approved for clinical use due to their uncertain side effects. We have previously reported a heparan sulphate (termed HS7) tuned to avidly bind VEGF . Here, we investigated the ability of HS7 to promote vascular recovery in a murine hindlimb vascular ischaemia model. HS7 stabilised VEGF against thermal and enzyme degradation in vitro, and isolated VEGF from serum via affinity-chromatography. C57BL6 mice subjected to unilateral hindlimb ischaemia injury received daily intramuscular injections of respective treatments (n = 8) and were assessed over 3 weeks by laser Doppler perfusion, magnetic resonance angiography, histology and the regain of function. Mice receiving HS7 showed improved blood reperfusion in the footpad by day 7. In addition, they recovered hindlimb blood volume two- to fourfold faster compared to the saline group; the greatest rate of recovery was observed in the first week. Notably, 17% of HS7-treated animals recovered full hindlimb function by day 7, a number that grew to 58% and 100% by days 14 and 21, respectively. This was in contrast to only 38% in the control animals. These results highlight the potential of purified glycosaminoglycan fractions for clinical use following vascular insult, and confirm the importance of harnessing the activity of endogenous pro-healing factors generated at injury sites.

Digital object identifier (DOI): 10.1007/s10456-018-9622-9

Pathology, research and practice, 214, 318--324
2018

Osteosarcoma arising in fibrous dysplasia, confirmed by mutational analysis of GNAS gene.

Sugiura, Yoshiya, Kanda, Hiroaki, Motoi, Noriko, Nomura, Kimie, Inamura, Kentaro, Okada, Erina, Matsumoto, Haruna, Shimoji, Takashi, Matsumoto, Seiichi, Nakayama, Jun, Takazawa, Yutaka, Ishikawa, Yuichi, Machinami, Rikuo

Malignancy arising in fibrous dysplasia (FD) is rare. Approximately 100 cases have been reported so far, and osteosarcoma is the most common malignancy. We report a case of osteosarcoma in a 33-year-old Japanese man with monostotic FD of the right proximal femur from the age of 16 years. Histologically, relatively well-differentiated osteosarcoma was found in the FD lesion. Immunohistochemically, the FD was negative for p53 or MDM2, and the MIB-1 index was less than 1%, whereas the osteosarcoma was positive for both p53 and MDM2, and the MIB-1 index was up to 15%. The FD and osteosarcoma were negative for CDK4. Fluorescent in situ hybridization assay showed no amplification of the MDM2 gene, indicating that the osteosarcoma was a conventional osteosarcoma, not an intraosseous well-differentiated type. The original cell of malignancy in FD is unclear. Malignancy can be potentially derived from dysplastic cells in the area of the FD or cells in the adjacent normal tissues. GNAS gene mutation has recently been reported for fibrous dysplasia and the mutation is highly specific to fibrous dysplasia among fibro-osseous lesions including osteosarcoma. In this case, point mutations of GNAS were found in the FD and osteosarcoma but not in the adjacent normal tissues, suggesting that osteosarcoma was derived from the spindle cells of FD. This is the first report to clearly show that osteosarcoma is derived from the spindle cells in fibrous dysplasia (FD).

Digital object identifier (DOI): 10.1016/j.prp.2017.10.018

Scientific reports, 8, 3122
2018

Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites.

Savi, Daiani C, Shaaban, Khaled A, Gos, Francielly Maria Wilke Ramos, Ponomareva, Larissa V, Thorson, Jon S, Glienke, Chirlei, Rohr, Jürgen

Microorganisms associated with plants are highly diverse and can produce a large number of secondary metabolites, with antimicrobial, anti-parasitic and cytotoxic activities. We are particularly interested in exploring endophytes from medicinal plants found in the Pantanal, a unique and widely unexplored wetland in Brazil. In a bio-prospecting study, strains LGMF1213 and LGMF1215 were isolated as endophytes from Vochysia divergens, and by morphological and molecular phylogenetic analyses were characterized as Phaeophleospora vochysiae sp. nov. The chemical assessment of this species reveals three major compounds with high biological activity, cercoscosporin (1), isocercosporin (2) and the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone (3). Besides the isolation of P. vochysiae as endophyte, the production of cercosporin compounds suggest that under specific conditions this species causes leaf spots, and may turn into a pathogen, since leaf spots are commonly caused by species of Cercospora that produce related compounds. In addition, the new compound 3-(sec-butyl)-6-ethyl-4,5-dihydroxy-2-methoxy-6-methylcyclohex-2-enone showed considerable antimicrobial activity and low cytotoxicity, which needs further exploration.

Digital object identifier (DOI): 10.1038/s41598-018-21400-2

Scientific reports, 8, 1032
2018

The ten-year evolutionary trajectory of a highly recurrent paediatric high grade neuroepithelial tumour with MN1:BEND2 fusion.

Burford, Anna, Mackay, Alan, Popov, Sergey, Vinci, Maria, Carvalho, Diana, Clarke, Matthew, Izquierdo, Elisa, Avery, Aimee, Jacques, Thomas S, Ingram, Wendy J, Moore, Andrew S, Frawley, Kieran, Hassall, Timothy E, Robertson, Thomas, Jones, Chris

Astroblastomas are rare brain tumours which predominate in children and young adults, and have a controversial claim as a distinct entity, with no established WHO grade. Reports suggest a better outcome than high grade gliomas, though they frequently recur. Recently, they have been described to overlap with a newly-discovered group of tumours described as'high grade neuroepithelial tumour with MN1 alteration' (CNS HGNET-MN1), defined by global methylation patterns and strongly associated with gene fusions targeting MN1. We have studied a unique case of astroblastoma arising in a 6 year-old girl, with multiple recurrences over a period of 10 years, with the pathognomonic MN1:BEND2 fusion. Exome sequencing allowed for a phylogenetic reconstruction of tumour evolution, which when integrated with clinical, pathological and radiological data provide for a detailed understanding of disease progression, with initial treatment driving tumour dissemination along four distinct trajectories. Infiltration of distant sites was associated with a later genome doubling, whilst there was evidence of convergent evolution of different lesions acquiring distinct alterations targeting NF-κB. These data represent an unusual opportunity to understand the evolutionary history of a highly recurrent childhood brain tumour, and provide novel therapeutic targets for astroblastoma/CNS HGNET-MN1.

Digital object identifier (DOI): 10.1038/s41598-018-19389-9

eLife, 7
2018

Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

Sun, Jiying, Shi, Lin, Kinomura, Aiko, Fukuto, Atsuhiko, Horikoshi, Yasunori, Oma, Yukako, Harata, Masahiko, Ikura, Masae, Ikura, Tsuyoshi, Kanaar, Roland, Tashiro, Satoshi

Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities.

Digital object identifier (DOI): 10.7554/eLife.32222

The American journal of surgical pathology, 42, 656--664
2018

Clarifying the Distinction Between Malignant Peripheral Nerve Sheath Tumor and Dedifferentiated Liposarcoma: A Critical Reappraisal of the Diagnostic Utility of MDM2 and H3K27me3 Status.

Makise, Naohiro, Sekimizu, Masaya, Kubo, Takashi, Wakai, Susumu, Hiraoka, Nobuyoshi, Komiyama, Motokiyo, Fukayama, Masashi, Kawai, Akira, Ichikawa, Hitoshi, Yoshida, Akihiko

Malignant peripheral nerve sheath tumor (MPNST) and dedifferentiated liposarcoma (DDLPS) are 2 major types of pleomorphic spindle cell sarcoma. The differentiation of MPNST and DDLPS by histomorphology alone can be problematic. Although MDM2 amplification and PRC2 alteration leading to H3K27me3 deficiency are genetic hallmarks of DDLPS and MPNST, respectively, a small number of MDM2-amplified MPNSTs and H3K27me3-deficient DDLPSs have been reported in the literature. We systematically compared MDM2 and H3K27me3 status in 68 MPNSTs and 47 DDLPSs. Of the 62 MPNSTs, 22 were immunopositive for MDM2, mostly in a weak and/or focal manner. Of the 21 MDM2-positive MPNSTs successfully tested by fluorescence in situ hybridization, high-level MDM2 amplification was observed in 1 case. In contrast, MDM2 staining and high-level MDM2 amplification were positive in all the DDLPS tested (28/28 and 20/20). Of the 68 MPNSTs, 42 cases (62%) exhibited complete loss of H3K27me3. All the 13 MPNSTs that showed heterologous differentiation were deficient in H3K27me3. Of the 47 DDLPSs, 3 cases (6%) had complete loss of H3K27me3, all of which exhibited heterologous differentiation. One case of H3K27me3-deficient DDLPS exhibited homozygous loss of EED according to targeted next-generation sequencing, whereas there were no alterations in NF1 and CDKN2A. In conclusion, high-level MDM2 amplification strongly suggests DDLPS over MPNST. Although a good marker for MPNST, H3K27me3 deficiency also uncommonly occurs in DDLPS in association with PRC2 mutational inactivation. Because both markers are imperfectly specific, rare sarcomas with dual features could be encountered, and their classification should integrate other parameters.

Digital object identifier (DOI): 10.1097/PAS.0000000000001014

British journal of pharmacology
2018

CO-EXPRESSION OF μ AND ∂ OPIOID RECEPTORS BY MOUSE COLONIC NOCICEPTORS.

Guerrero-Alba, Raquel, Valdez-Morales, Eduardo Emmanuel, Jiménez-Vargas, Nestor Nivardo, Bron, Romke, Poole, Daniel, Reed, David, Castro, Joel, Campaniello, Melissa, Hughes, Patrick A, Brierley, Stuart M, Bunnett, Nigel, Lomax, Alan E, Vanner, Stephen

To better understand opioid signaling in visceral nociceptors, we examined the expression and selective activation of mu (MOR) and delta opioid receptors (DOR) by dorsal root ganglia (DRG) neurons innervating the mouse colon. DRG neurons projecting to the colon were identified by retrograde tracing. DOR-GFP reporter mice, in situ hybridization, single-cell RT-PCR, and MOR-specific antibodies were used to characterize expression of MOR and DOR. Voltage-gated Ca currents and neuronal excitability were recorded in small diameter nociceptive neurons (capacitance < 30pF) by patch clamp and ex vivo single-unit afferent recordings were obtained from the colon. In situ hybridization of oprm1 expression in Fast Blue-labeled DRG neurons was observed in 61% of neurons. MOR and DOR were expressed by 36-46% of colon DRG neurons, and co-expressed by ~25 % of neurons. MOR and DOR agonists inhibited Ca currents in DRG and these effects were blocked by opioid antagonists. One or both agonists inhibited action potential firing by colonic afferent endings. Incubation of neurons with supernatants from inflamed colon segments inhibited Ca currents and neuronal excitability. The MOR but not the DOR antagonist, inhibited the supernatant effects on Ca currents, whereas both antagonists inhibited their actions on neuronal excitability. A significant number of small diameter colonic nociceptors co-express MOR and DOR and are inhibited by agonists and endogenous opioids in inflamed tissues. Thus, opioids that act at MOR or DOR or their heterodimers may be effective in the treatment of visceral pain.

Digital object identifier (DOI): 10.1111/bph.14222

Nature communications, 9, 1048
2018

Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors.

George, Julie, Walter, Vonn, Peifer, Martin, Alexandrov, Ludmil B, Seidel, Danila, Leenders, Frauke, Maas, Lukas, Müller, Christian, Dahmen, Ilona, Delhomme, Tiffany M, Ardin, Maude, Leblay, Noemie, Byrnes, Graham, Sun, Ruping, De Reynies, Aurélien, McLeer-Florin, Anne, Bosco, Graziella, Malchers, Florian, Menon, Roopika, Altmüller, Janine, Becker, Christian, Nürnberg, Peter, Achter, Viktor, Lang, Ulrich, Schneider, Peter M, Bogus, Magdalena, Soloway, Matthew G, Wilkerson, Matthew D, Cun, Yupeng, McKay, James D, Moro-Sibilot, Denis, Brambilla, Christian G, Lantuejoul, Sylvie, Lemaitre, Nicolas, Soltermann, Alex, Weder, Walter, Tischler, Verena, Brustugun, Odd Terje, Lund-Iversen, Marius, Helland, Åslaug, Solberg, Steinar, Ansén, Sascha, Wright, Gavin, Solomon, Benjamin, Roz, Luca, Pastorino, Ugo, Petersen, Iver, Clement, Joachim H, Sänger, Jörg, Wolf, Jürgen, Vingron, Martin, Zander, Thomas, Perner, Sven, Travis, William D, Haas, Stefan A, Olivier, Magali, Foll, Matthieu, Büttner, Reinhard, Hayes, David Neil, Brambilla, Elisabeth, Fernandez-Cuesta, Lynnette, Thomas, Roman K

Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1 /DLL3 /NOTCH , type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1 /DLL3 /NOTCH , and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.

Digital object identifier (DOI): 10.1038/s41467-018-03099-x

International journal of radiation biology, 94, 664--670
2018

Evaluation of chromosomal aberrations induced by , [email protected], Re-dendrimer nanosystem on B16f1 melanoma cells.

Tassano, Marcos, Oddone, Natalia, Fernández, Marcelo, Porcal, Williams, García, María Fernanda, Martínez-López, Wilner, Benech, Juan Claudio, Cabral, Pablo

To study the rhenium-188 labeling of polyamidoamine (PAMAM) generation 4 (G4) dendrimer and its evaluation on biodistribution and chromosomal aberrations in melanoma cells induced by ionizing radiation as potential treatment agent. Dendrimers were first conjugated with Suc-HYNIC (succinimidyl 6-hydrazinopyridine-3-carboxylic acid hydrochloride). Dendrimer-HYNIC was then incubated with ReO . Biodistribution was performed administrating Re-dendrimer to normal (NM) or melanoma-bearing mice (MBM). Chromosome aberration test was conducted in order to measure treatment capacity of Re-dendrimer in melanoma cells. Radiolabeling yield of dendrimer was approx. 70%. Biodistribution studies in NM showed blood clearance with hepatic and renal depuration. MBM showed a similar pattern of biodistribution with tumor uptake of 6% of injected dose. Aberrant metaphases quantified in control cells were 7%, increasing to 29.5% in cells treated with 15μCi (0.555 MBq) of Re-dendrimer for 24 h. Re-dendrimer can produce double-stranded breaks in DNA induced by ionizing radiation in melanoma cells in vitro.

Digital object identifier (DOI): 10.1080/09553002.2018.1478161

Mutation research, 826, 47--52
2018

Folate modulates guanine-quadruplex frequency and DNA damage in Werner syndrome.

Tavakoli Shirazi, Paniz, Leifert, Wayne Richard, Fenech, Michael Felix, François, Maxime

Guanine-quadruplexes (G4) are stable tetra-stranded DNA structures that may cause DNA replication stress and inhibit gene expression. Defects in unwinding these structures by DNA helicases may result in telomere shortening and DNA damage. Furthermore, due to mutations in WRN helicase genes in Werner syndrome, G4 motifs are likely to be key elements in the expression of premature aging phenotypes. The methylation of DNA plays a significant role in the stability and occurrence of G4. Thus, G4 frequency and DNA methylation mechanisms may be affected by excesses or deficiencies in methyl donors such as folate. B-Lymphocytes from Werner patients (n?=?5) and healthy individuals (n?=?5) were cultured in RPMI medium under condition of folate deficiency (20?nM) or sufficiency (200?nM) for 14 days. Cells were fixed on microscope slides for immunofluorescent staining to measure G4 frequency and ?H2AX (a marker of DNA strand breaks) intensity, using automated quantitative imaging fluorescent microscopy. There was a significant increase (p?<?0.05) in G4 levels in Werner syndrome patients compared to healthy controls. Werner and control cells grown in 20?nM folate media also showed significant increases in G4 (p?<?0.001) and ?H2AX (p?<?0.01) signals compared with the same cells grown in 200?nM folate. Control cells grown in 20?nM folate also showed a significant reduction in DNA methylation levels (P?<?0.05). The results of this study suggest that the occurrence of DNA G4 structures can be modulated in vitro via nutrients with important roles in methylation.

Digital object identifier (DOI): 10.1016/j.mrgentox.2017.12.002

Diagnostics (Basel, Switzerland), 8
2018

Aneuploid CTC and CEC.

Lin, Peter Ping

Conventional circulating tumor cell (CTC) detection technologies are restricted to large tumor cells (> white blood cells (WBCs)), or those unique carcinoma cells with double positive expression of surface epithelial cell adhesion molecule (EpCAM) for isolation, and intracellular structural protein cytokeratins (CKs) for identification. With respect to detecting the full spectrum of highly heterogeneous circulating rare cells (CRCs), including CTCs and circulating endothelial cells (CECs), it is imperative to develop a strategy systematically coordinating all tri-elements of nucleic acids, biomarker proteins, and cellular morphology, to effectively enrich and comprehensively identify CRCs. Accordingly, a novel strategy integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), independent of cell size variation and free of hypotonic damage as well as anti-EpCAM perturbing, has been demonstrated to enable in situ phenotyping multi-protein expression, karyotyping chromosome aneuploidy, and detecting cytogenetic rearrangements of the gene in non-hematologic CRCs. Symbolic non-synonymous single nucleotide variants (SNVs) of both the gene (P33R) in each single aneuploid CTCs, and the cyclin-dependent kinase inhibitor 2A ( ) tumor suppressor gene in each examined aneuploid CECs, were identified for the first time across patients with diverse carcinomas. Comprehensive co-detecting observable aneuploid CTCs and CECs by SE-iFISH, along with applicable genomic and/or proteomic single cell molecular profiling, are anticipated to facilitate elucidating how those disparate categories of aneuploid CTCs and CECs cross-talk and functionally interplay with tumor angiogenesis, therapeutic drug resistance, tumor progression, and cancer metastasis.

Digital object identifier (DOI): 10.3390/diagnostics8020026

PloS one, 13, e0190970
2018

Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma.

Hultman, Isabell, Haeggblom, Linnea, Rognmo, Ingvild, Jansson Edqvist, Josefin, Blomberg, Evelina, Ali, Rouknuddin, Phillips, Lottie, Sandstedt, Bengt, Kogner, Per, Shirazi Fard, Shahrzad, Ährlund-Richter, Lars

In this study chemotherapy response in neuroblastoma (NB) was assessed for the first time in a transplantation model comprising non-malignant human embryonic microenvironment of pluripotent stem cell teratoma (PSCT) derived from diploid bona fide hESC. Two NB cell lines with known high-risk phenotypes; the multi-resistant BE(2)-C and the drug sensitive IMR-32, were transplanted to the PSCT model and the tumour growth was exposed to single or repeated treatments with doxorubicin, and thereafter evaluated for cell death, apoptosis, and proliferation. Dose dependent cytotoxic effects were observed, this way corroborating the experimental platform for this type of analysis. Notably, analysis of doxorubicin-resilient BE(2)-C growth in the PSCT model revealed an unexpected 1,5-fold increase in Ki67-index (p<0.05), indicating that non-cycling (G0) cells entered the cell cycle following the doxorubicin exposure. Support for this notion was obtained also in vitro. A pharmacologically relevant dose (1μM) resulted in a marked accumulation of Ki67 positive BE(2)-C cells (p<0.0001), as well as a >3-fold increase in active cell cycle (i.e. cells positive staining for PH3 together with incorporation of EdU) (p<0.01). Considering the clinical challenge for treating high-risk NB, the discovery of a therapy-provoked growth-stimulating effect in the multi-resistant and p53-mutated BE(2)-C cell line, but not in the drug-sensitive p53wt IMR-32 cell line, warrants further studies concerning generality and clinical significance of this new observation.

Digital object identifier (DOI): 10.1371/journal.pone.0190970

Postgraduate medical journal, 94, 398--403
2018

Adenotonsillar microbiome: an update.

Johnston, James Jordan, Douglas, Richard

Pathogenic bacteria associated with the adenoids and tonsils cause much morbidity in the paediatric population. Hyperplasia of the adenoids is associated with otitis media with effusion and hyperplasia of the palatine tonsils is associated with both recurrent tonsillitis and obstructive sleep apnoea. Most current knowledge of the microbiology of the upper airways has been derived from culture-based studies, which usually reflect only a small fraction of the bacteria present on the mucosal surface. Culture-independent molecular surveys based on 16S ribosomal RNA sequencing are now being employed to determine the microbiota on the surface and within the tissue of adenoids and palatine tonsils. This review describes the new techniques applied in determining the microbiome and summarises the results of studies employing these techniques.

Digital object identifier (DOI): 10.1136/postgradmedj-2018-135602

Surgical oncology, 27, 106--113
2018

Detection of RET (rearranged during transfection) variants and their downstream signal molecules in RET rearranged lung adenocarcinoma patients.

Kim, Jeong-Oh, Shin, Jung-Young, Kim, Min Young, Son, Kyoung Hwa, Jung, Chan Kwon, Kim, Tae-Jung, Kim, Su Young, Park, Jae Kil, Sung, Sook Whan, Bae, Sang Ju, Min, Hyun Jung, Kang, Jin-Hyoung

We screened resected tumor tissues from patients with lung cancer for EGFR mutations, ALK rearrangements, and rearranged during transfection (RET) gene variants (including RET rearrangements and the Kinesin Family Member 5B (KIF5B)-RET fusion gene) using various methods including reverse transcription polymerase chain reaction (RT-PCR), transcript assays, fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). We also examined the protein expression of associated downstream signaling molecules to assess the effect of these variants on patient outcome. We constructed a tissue microarray (TMA) comprising 581 resected tumor tissues from patients with lung adenocarcinoma and analyzed the microarray by both FISH (using RET break-apart and KIF5B-RET SY translocation probes) and a commercial RET transcript assay. We evaluated the expression of RET and RET-related signaling molecules, including p-AKT and p-ERK, by TMA -based IHC staining. Among the 581 specimens, 51 (8.8%) specimens harbored RET rearrangements, including 12 cases (2.1%) carrying a KIF5B-RET fusion gene. Surprisingly, RET expression was lower in KIF5B-RET fusion gene-positive than in RET wild-type specimens. We detected activating EGFR mutations in 11 (21.6%) of the 51 RET variant-positive specimens. Among the KIF5B-RET fusion gene-positive specimens, p-ERK expression was significantly lower in the EGFR mutation subgroup showing RET expression than in the EGFR mutation subgroup that did not express RET. Similarly, the RET rearrangement group showed significant variation in the expression level of p-AKT (P?=?0.028) and p-ERK, whose expression remarkably increased in specimens not expressing RET. The expression of p-ERK markedly increased in the RET rearrangement group regardless of RET expression. This result suggests that a combination of RET and ERK inhibitors may be an effective treatment strategy for lung adenocarcinoma patients harboring RET variants.

Digital object identifier (DOI): 10.1016/j.suronc.2018.01.006

Scientific Reports, 8(1), 1141
2018

First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness

Cirrone, GAP, Manti, L, Margarone, D, Petringa, G, Giuffrida, L, Minopoli, A, Picciotto, A, Russo, G, Cammarata, F, Pisciotta, P, others

Protontherapy is hadrontherapy’s fastest-growing modality and a pillar in the battle against cancer. Hadrontherapy’s superiority lies in its inverted depth-dose profile, hence tumour-confined irradiation. Protons, however, lack distinct radiobiological advantages over photons or electrons. Higher LET (Linear Energy Transfer) 12C-ions can overcome cancer radioresistance: DNA lesion complexity increases with LET, resulting in efficient cell killing, i.e. higher Relative Biological Effectiveness (RBE). However, economic and radiobiological issues hamper 12C-ion clinical amenability. Thus, enhancing proton RBE is desirable. To this end, we exploited the p + 11B → 3α reaction to generate high-LET alpha particles with a clinical proton beam. To maximize the reaction rate, we used sodium borocaptate (BSH) with natural boron content. Boron-Neutron Capture Therapy (BNCT) uses 10B-enriched BSH for neutron irradiation-triggered alpha particles. We recorded significantly increased cellular lethality and chromosome aberration complexity. A strategy combining protontherapy’s ballistic precision with the higher RBE promised by BNCT and 12C-ion therapy is thus demonstrated.

Cancer letters, 412, 99--107
2018

Quantified postsurgical small cell size CTCs and EpCAM, [email protected], circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse.

Wang, Liang, Li, Yilin, Xu, Jing, Zhang, Aiqun, Wang, Xuedong, Tang, Rui, Zhang, Xinjing, Yin, Hongfang, Liu, Manting, Wang, Daisy Dandan, Lin, Peter Ping, Shen, Lin, Dong, Jiahong

Detection of hepatocellular carcinoma circulating tumor cells performed with conventional strategies, is significantly limited due to inherently heterogeneous and dynamic expression of EpCAM, as well as degradation of cytokeratins during epithelial-to-mesenchymal transition, which inevitably lead to non-negligible false negative detection of such "uncapturable and invisible" CTCs. A novel SE-iFISH strategy, improved for detection of HCC CTCs in this study, was applied to comprehensively detect, in situ phenotypically and karyotypically characterize hepatocellular and cholangiocarcinoma CTCs (CD45 /CD31 ) in patients subjected to surgical resection. Clinical significance of diverse subtypes of CTC was systematically investigated. Existence of small cell size CTCs (≤5 μm of WBCs) with cytogenetic abnormality of aneuploid chromosome 8, which constituted majority of the detected CTCs in HCC patients, was demonstrated for the first time. The stemness marker EpCAM aneuploid circulating tumor stem cells (CTSCs), and EpCAM small CTCs with trisomy 8, promote tumor growth. Postsurgical quantity of small triploid CTCs (≥5 cells/6 ml blood), multiploid (≥pentasomy 8) CTSCs or CTM (either one ≥ 1) significantly correlated to HCC patients' poor prognosis, indicating that detection of those specific subtypes of CTCs and CTSCs in post-operative patients help predict neoplasm recurrence.

Digital object identifier (DOI): 10.1016/j.canlet.2017.10.004

Frontiers in neuroscience, 12, 55
2018

Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice.

Leinenga, Gerhard, Götz, Jürgen

Deposition of amyloid-β (Aβ) peptide leads to amyloid plaques that together with tau deposits characterize the brains of patients with Alzheimer's disease (AD). In modeling this pathology, transgenic animals such as the APP23 strain, that expresses a mutant form of the amyloid precursor protein found in familial cases of AD, have been instrumental. In previous studies, we have shown that repeated treatments with ultrasound in a scanning mode (termed scanning ultrasound or SUS) were effective in removing Aβ and restoring memory functions, without the need for a therapeutic agent such as an Aβ antibody. Considering that age is the most important risk factor for AD, we extended this study in which the mice were only 12 months old at the time of treatment by assessing a cohort of 2 year-old mice. Interestingly, at this age, APP23 mice are characterized by cerebral amyloid angiopathy (CAA) and the presence of occasional microbleeds. We found that SUS in aged mice that have been exposed to four SUS sessions that were spread out over 8 weeks and analyzed 4 weeks later did not show evidence of increased CAA or microbleeds. Furthermore, amyloid was reduced as assessed by methoxy-XO4 fluorescence. In addition, plaque-associated microglia were more numerous in SUS treated mice. Together this adds to the notion that SUS may be a treatment modality for human neurodegenerative diseases.

Digital object identifier (DOI): 10.3389/fnins.2018.00055

British journal of cancer
2018

Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study.

Berbegall, Ana P, Bogen, Dominik, Pötschger, Ulrike, Beiske, Klaus, Bown, Nick, Combaret, Valérie, Defferrari, Raffaella, Jeison, Marta, Mazzocco, Katia, Varesio, Luigi, Vicha, Ales, Ash, Shifra, Castel, Victoria, Coze, Carole, Ladenstein, Ruth, Owens, Cormac, Papadakis, Vassilios, Ruud, Ellen, Amann, Gabriele, Sementa, Angela R, Navarro, Samuel, Ambros, Peter F, Noguera, Rosa, Ambros, Inge M

In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues. The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH. Patients <18 months (18?m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: <18?m: 0.95?±?0.04, >18?m: 0.67?±?0.14, p?=?0.011; metastatic: <18?m: 0.76?±?0.15, >18?m: 0.28?±?0.09, p?=?0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse. This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.

Digital object identifier (DOI): 10.1038/s41416-018-0098-6